Visualization#
Visualization utilities for trajectories, parameter estimates, and errors.
Publication-quality plotting functions for TAG-K experiments.
Provides: - 3-D trajectory visualisation with orientation arrows - Residual error time-series plots - Cumulative distribution function (CDF) plots for benchmark comparison
- online_estimators.visualization.plotting.visualize_3d_traj(result, quat_fmt='wxyz', n_arrows=50, arrow_length=0.05, figsize=(8, 6), title=None)[source]#
3-D trajectory plot with orientation arrows.
- Parameters:
result (dict) – Must contain
'x_meas_traj'(T, 13) and'x_ref_traj'(T, 13) or (T, 3).quat_fmt (
"wxyz"or"xyzw") – Quaternion ordering convention.n_arrows (int) – Number of body-frame orientation arrows to draw.
arrow_length (float) – Arrow length in world units.
figsize (tuple)
title (str or None)
- Return type:
matplotlib.figure.Figure
- online_estimators.visualization.plotting.visualize_residual_errors(result, eps=1e-12, logy=False)[source]#
Plot absolute and relative residual errors for theta_gt and theta_est.
- online_estimators.visualization.plotting.plot_error_cdfs(npz_paths, algos=None, figsize=(5.0, 4.0), title=None, save_prefix=None, x_max=0.05)[source]#
Plot CDF curves of per-trial tracking errors for multiple algorithms.
Reads one or more
.npzresult files and plots the empirical CDF of position / velocity / orientation errors.- Parameters:
- Return type:
- Returns:
figs (dict) –
{"pos": Figure, "vel": Figure, "ori": Figure}axes (dict) –
{"pos": Axes, "vel": Axes, "ori": Axes}