Noise Models#
Sensor noise models for simulation.
Noise models for sensor simulation.
Provides additive noise generators with different temporal correlation structures, suitable for Monte-Carlo simulation of measurement systems.
- online_estimators.noise.models.apply_noise(x, level='none', rng=None)[source]#
Apply position/velocity noise to a 13-dimensional quadrotor state.
- Parameters:
x (np.ndarray, shape
(13,)) – State vector[r(3), q(4), v(3), omega(3)].level (str) – One of
"none","low","medium","high".rng (np.random.Generator, optional) – Random number generator. Falls back to the global NumPy RNG when None.
- Returns:
Noisy state.
- Return type:
np.ndarray, shape
(13,)
- class online_estimators.noise.models.AWGNNoise(sigma)[source]#
Bases:
objectAdditive White Gaussian Noise (i.i.d. per sample).
- Parameters:
sigma (float) – Standard deviation.
Examples
>>> noise = AWGNNoise(sigma=0.01) >>> sample = noise.sample(shape=(3,))
- class online_estimators.noise.models.OUNoise(theta, mu, sigma, dt=0.01)[source]#
Bases:
objectOrnstein-Uhlenbeck process for temporally-correlated noise.
The OU process is a mean-reverting stochastic process:
dx = theta (mu - x) dt + sigma sqrtdt * N(0,1)- Parameters: