
GRiD: GPU-Accelerated Rigid Body Dynamics with Analytical Gradients
Brian Plancher1, Sabrina M. Neuman1, Radhika Ghosal1, Scott Kuindersma1,2, Vijay Janapa Reddi1

1: Harvard University John A. Paulson School of Engineering and Applied Sciences, 2: Boston Dynamics

Performance Results:
• Benchmarked against Pinocchio, a state-of-the-art CPU library

o Pinocchio supports optimized CPU code generation of rigid body 
dynamics & analytical gradients

• GRiD scales well to complex robots and multiple computations

o As much as a 7.2x computational speedup over the CPU

o As much as a 2.5x speedup when accounting for I/O overhead

Forward Dynamics Gradient Multiple Computation Latency

1
6

3
2

6
4

1
2

8
2

5
6

1
6

3
2

6
4

1
2

8
2

5
6

1
6

3
2

6
4

1
2

8
2

5
6

1
6

3
2

6
4

1
2

8
2

5
6

IIWA CPU IIWA GPU HyQ CPU HyQ GPU

1
6

3
2

6
4

1
2

8
2

5
6

1
6

3
2

6
4

1
2

8
2

5
6

Atlas CPU Atlas GPU

1.0x 1.7x

1.6x 3.7x

2.1x 7.2x

1.0x 1.6x

1.8x 4.9x

2.0x 5.0x

0.9x 1.3x

2.5x 5.3x

1.5x 2.6x

160

140

120

20

0

60

40

80

100

M
ea

n
 C

o
m

p
u

ta
ti

o
n

 T
im

e 
(μ

s)

180 900

800

600

400

200

0

700

500

300

100

N =

IIWA CPU IIWA GPU HyQ CPU HyQ GPU Atlas CPU Atlas GPU

0.0

2.0

4.0

6.0

8.0

ID Minv FD ∇ID ∇FD ID Minv FD ∇ID ∇FD

dof CPU Latency GPU Latency

IIWA to HyQ IIWA to Atlas

4.3x 3.9x

6.4x 5.9x
6.8x 7.2x

1.7x
1.1x 1.4x 1.4x 1.5x 1.5x

2.7x
3.3x

2.9x 3.1x 3.3x

1.1x 1.1x 0.9x 0.9x 0.9x

Robot
Sc

al
in

g 
Fa

ct
o

r

Single Computation Latency Scaling across Robots and Algorithms

GRiD currently supports:

• Prismatic, fixed, and revolute joints
• ID, FD, M-1

• 𝛁ID, 𝛁FD with respect to 𝐪, ሶ𝒒, 𝐮

GRiD is a header-only, modular, open-source, 

GPU-accelerated library for rigid body dynamics 
with analytical gradients. Key features include:

• URDF parsing & code generation to deliver 
optimized dynamics kernels that expose GPU-
friendly computational patterns

o E.g., Leverages both fine-grained parallelism 
within each computation & coarse-grained 
parallelism between computations

• Delivers end-to-end computational speedups 
through algorithmic refactoring

• Modular, open-source, and header-only

URDFParser

GRiDCodeGenerator

RBDReference
GRiD

GRiDBenchmarks

User’s 
URDF

Validated Outputs

Optimized CUDA 
C++ Code

Performance 
Benchmarks

Inputs

Outputs

github.com/robot-acceleration/GRiD

This material is based upon work supported by the National Science Foundation

(under Grant DGE1745303 and Grant 2030859). Any opinions, findings,

conclusions, or recommendations expressed in this material are those of the

authors and may not reflect those of the funding organizations.

Design Optimizations:
We re-factored algorithms to better 
leverage the GPU’s strengths by:

• Exposing more natural parallelism
(especially across branches)

• Reducing work done in serial loops

• Leveraging topology driven 
sparsity patterns in matrices

• Unifying computational operations

Single Computation Latency (μs)
(ID = Inverse Dynamics, M -1 = Direct Inverse of the Mass Matrix, FD = 

Forward Dynamics, and ∇ indicates the gradient of that algorithm)

Algorithm IIWA HyQ Atlas

CPU

ID 0.3 0.3 1.1

M-1 0.5 0.8 3.4

FD 0.9 1.2 5.3

∇ID 1.4 2.1 9.8

∇FD 2.9 4.3 20.9

GPU

ID 3.0 3.2 8.0

M-1 5.2 5.6 17.4

FD 7.7 6.9 22.4

∇ID 6.3 5.8 19.5

∇FD 12.9 11.0 42.1

We used a high-performance workstation with a 3.8GHz eight-core Intel Core i7-10700K CPU and a
1.44GHz NVIDIA GeForce RTX 3080 GPU running Ubuntu 20.04 and CUDA 11.4.4 We compare timing
results across three robot models: the 7 degrees-of-freedom (dof) Kuka LBR IIWA-14 manipulator, the 12
dof HyQ quadruped, and the 30 dof Atlas humanoid. For single computation and multiple computation
latency, we took the average of one million, and one hundred thousand trials, respectively.

The Big Picture:

https://github.com/robot-acceleration/GRiD

