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Abstract. Parallelism can be used to significantly increase the through-
put of computationally expensive algorithms. With the widespread adop-
tion of parallel computing platforms such as GPUs, it is natural to con-
sider whether these architectures can benefit robotics researchers inter-
ested in solving trajectory optimization problems online. Differential Dy-
namic Programming (DDP) algorithms have been shown to achieve some
of the best timing performance in robotics tasks by making use of op-
timized dynamics methods and CPU multi-threading. This paper aims
to analyze the benefits and tradeoffs of higher degrees of parallelization
using a multiple-shooting variant of DDP implemented on a GPU. We
describe our implementation strategy and present results demonstrating
its performance compared to an equivalent multi-threaded CPU imple-
mentation using several benchmark control tasks. Our results suggest
that GPU-based solvers can offer increased per-iteration computation
time and faster convergence in some cases, but in general tradeoffs exist
between convergence behavior and degree of algorithm-level parallelism.

Keywords: optimization and optimal control; motion and path plan-
ning; differential dynamic programming; parallel computing; GPU

1 Introduction

The impending end of Moore’s Law and the rise of GPU architectures has led to a
flurry of research focused on designing algorithms that take advantage of massive
parallelism. This trend is prominent in the machine learning literature, and re-
cent work in robotics has demonstrated real-time collision checking for a manip-
ulator using custom voxel grids on an FPGA [1] and fast sample-based planning
on a GPU [2,3,4]. For dynamic trajectory optimization, there has been a histori-
cal interest in parallel strategies [5] and several more recent efforts lend support
to the hypothesis that significant computational benefits are possible [6,7,8,9].

However, there remains much to learn about the algorithmic principles that
lead to improvements in dynamic robot control tasks and how large-scale parallel
execution of existing algorithms compares to state-of-the-art CPU implementa-
tions. This paper aims to add to our understanding of the benefits and limitations
of instruction-level and algorithm-level parallelization for a particular family of
trajectory optimization algorithms based on Differential Dynamic Programming
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(DDP) [10]. We focus on DDP and its variants, particularly the iterative Linear
Quadratic Regulator (iLQR) [11], as they have recently received increased atten-
tion due to growing evidence that online planning for model predictive control
(MPC) is possible for high-dimensional robots [9,12,13,14,15,16].

We describe our parallel implementation strategy on a modern NVIDIA
GPU and present results demonstrating its performance compared to an equiva-
lent multi-threaded CPU implementation using benchmark trajectory optimiza-
tion tasks on a quadrotor and a 7-DoF manipulator. Our results suggest that
GPU-based solvers can offer faster convergence than equivalent parallelized CPU
implementations in some cases, which could be important for realtime model-
predictive control applications, but performance tradeoffs exist between conver-
gence behavior and time per iteration as the degree of algorithm-level parallelism
increases.

1.1 Related Work

Prior work on parallel nonlinear optimization has broadly focused on exploiting
the natural separability of operations performed by the algorithm to achieve
instruction-level parallelism. For example, if a series of gradients needs to be
computed for a list of static variables, that operation can be shifted from a
serial loop over them to a parallel computation across them. Alternatively, if
block diagonal matrices must be inverted many times by the solver, each of
these instructions can be broken down into a parallel solve of several smaller
linear systems. These parallelizations do not change the theoretical properties
of the algorithm and therefore can and should be used whenever possible. This
research has led to a variety of optimized QP solvers targeting CPUs [17,18],
GPUs [19,20], and FGPAs [21,22]. These approaches have also been used to
specifically improve the performance of a subclass of QPs that frequently arise
in trajectory optimization problems on multi-threaded CPUs [23,24,25,26] and
GPUs [27,28]. Additionally, Antony and Grant [8] used GPUs to exploit the
inherent parallelism in the “next iteration setup” step of DDP.

In contrast to instruction-level parallelism, algorithm-level parallelism changes
the underlying algorithm to create more opportunities for simultaneous execu-
tion of instructions. In the field of trajectory optimization, this approach was
first explored by Bock and Plitt [29] and then Betts and Huffman [5], and has in-
spired a variety of “multiple shooting” methods [30,31]. Recently, this approach
has been used to parallelize both an SQP algorithm [6] and the forward [7,32]
and backward passes [9] of the iLQR algorithm. Experimental results from using
these parallel iLQR variants on multi-core CPUs represent the current state of
the art for real-time robotic motion planning.

Our work aims to add to this literature by systematically comparing the
performance of an identical parallel implementation of iLQR on a modern CPU
and GPU to (1) better understand the performance implications of various im-
plementation decisions that must be made on parallel architectures and (2) to
evaluate the benefits and trade-offs of higher degrees of parallelization (GPU)
versus a higher clock rate (CPU).
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2 DDP Background

The classical DDP algorithm begins by assuming a discrete-time nonlinear dy-
namical system, xk+1 = f(xk, uk), where x ∈ Rn is a state and u ∈ Rm is a
control input. The goal is to find an input trajectory, U = {u0, . . . , uN−1}, that
minimizes an additive cost function,

J(x0, U) = `f (xN ) +

N−1∑
k=0

`(xk, uk), (1)

where x1, . . . , xN are computed by integrating the dynamics from x0.
Using Bellman’s principle of optimality, the optimal cost-to-go (CTG), Vk(x),

can be defined by the recurrence relation:

VN (x) = `f (xN ) Vk(x) = min
u

`(x, u) + Vk+1(f(x, u)). (2)

DDP avoids the curse of dimensionality by optimizing over Q(δx, δu), the
second order Taylor expansion of the local change in the minimization argument
in (2) under perturbations, δx, δu:

Q(δx, δu) =
1

2
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δu
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 ,
Qxx = `xx + fTx V

′
xxfx + V ′x · fxx, Quu = `uu + fTu V

′
xxfu + V ′x · fuu,

Qxu = `xu + fTx V
′
xxfu + V ′x · fxu, Qx = `x + fTx V

′
x, Qu = `u + fTu V

′
x.

(3)

Following the notation used elsewhere [12], a prime is used to indicate the next
timestep, and derivatives are denoted with subscripts. The rightmost terms in
the equations for Qxx, Quu, and Qxu involve second derivatives of the dynamics,
which are rank-three tensors. These tensor calculations are relatively expensive
and are often omitted, resulting in the iLQR algorithm [11].

Minimizing equation (3) with respect to δu results in the following correction:

δu = −Q−1uu (Quxδx+Qu) ≡ Kδx+ κ, (4)

which consists of an affine term κ and a linear feedback term Kδx. Substituting
these terms into equation (3) leads to an updated quadratic model of V :

Vx = Qx −KTQuuκ−Qxuκ−KTQu

Vxx = Qxx −KTQuuK −QxuK −KTQux.
(5)

Therefore, a backward update pass can be performed starting at the final state
and iteratively applying the above computations. A forward simulation pass,
using the full nonlinear dynamics, is then performed to compute a new state
trajectory using the updated controls. This forward-backward process is repeated
until the algorithm converges.
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3 Parallelizing DDP

3.1 Instruction-Level Parallelization

Since the cost (1) is additive and depends on each state and control indepen-
dently, it can be computed in parallel following forward integration and summed
in log(N) operations using a parallel reduction operator. In addition, instead of
computing the line search during the forward pass by sequentially reducing α,
we can compute all forward simulations for a set of possible α values in paral-
lel. Furthermore, if all simulations are computed in parallel, then the algorithm
could select the “best” trajectory across all α values, rather than the first value
that results in an improvement. We employ the line search criteria proposed by
Tassa [33] and accept an iterate if the ratio of the expected to actual reduction,

z =
(
J − J̃

)
/δV ∗(α) where δV ∗(α) = −ακTHu +

α2

2
κTHuuκ, (6)

falls in the range

0 < c1 < z < c2 <∞. (7)

Finally, since the dynamics are also defined independently on each state and
control pair, the Taylor expansions of the dynamics and cost (the “next iteration
setup” step) can occur in parallel following the forward pass. Since this is one of
the more expensive steps, this is almost always parallelized in CPU implemen-
tations of DDP currently being used for online robotic motion planning (though
the number of knot points often exceeds the number of processor cores).

3.2 Algorithm-Level Parallelization

Backward Pass We break the N time steps into Mb equally spaced parallel
blocks of size Nb = N/Mb. We compute the CTG within each block by passing
information serially backwards in time, as is done in standard DDP. After each
iteration we pass the information from the beginning of one block to the end of
the adjacent block, ensuring that CTG information is at worst case (Mb − 1)
iterations stale between the first and last block as shown in Figure 1.

Fig. 1. Graphical representation of the backward pass algorithm-level parallelizations.

Farshidian et al. [9] note that this approach may fail if the trajectory in
the next iterate is far enough away from the previous iterate as the stale CTG
approximations are defined in relative coordinates and are only valid locally.
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Therefore, they propose a linear coordinate transformation of the quadratic CTG
approximation at iterate i to re-center it about the current iterate:

V i+1
xx = V i

xx, V i+1
x = V i

x + V i
xx(xi+1 − xi). (8)

While this process will still generally converge [34,35], in practice, some for-
ward passes will fail to find a solution because either the CTG information was
“too stale,” or the new trajectory moved too far from the previous trajectory,
rendering the controls at later time steps sub-optimal. Therefore, on the next
pass we use the failed iterate’s CTG approximation, as it is a less stale estimate,
and again follow Tassa [33] and add a state regularization term ρIn to V ′xx in
the computation of Quu and Qxu to stay closer to the last successful trajectory:

Quu = `uu + fTu (V ′xx + ρIn) fu + V ′x · fuu
Qxu = `xu + fTx (V ′xx + ρIn) fu + V ′x · fxu.

(9)

Forward Pass Giftthaler et al. [7] introduced Gauss-Newton Multiple Shooting,
which adapts iLQR for multiple shooting through a fast consensus sweep with
linearized dynamics followed by a multiple shooting forward simulation from Mf

equally spaced states of Nf = N/Mf time steps as shown in Figure 2.

Fig. 2. Graphical representation of the forward pass algorithm-level parallelizations.

This parallel simulation leads to defects d between the edges of each block
and changes the one step dynamics to xk+1 = f(xk, uk)− dk. Incorporating this
change into Equations 2-3 results in a modified version of Q (δx, δu):

Qx = Qx + fTx V
′
xxd Qu = Qu + fTu V

′
xxd. (10)

We also update our line search criteria to include the following:

0 < max
k
||dk||1 < c3 <∞, (11)

excluding any trajectories that have large defects which represent an artificial
mathematical reduction in cost that is infeasible in practice.

Finally, in order to update the start states of each block, a serial consen-
sus sweep is performed by integrating the state trajectory using the previously
computed linearized dynamics (A = fx, B = fu) and feedback controls (K, κ),
updating state k + 1 for iterate i+ 1 (using a line search parameter α):

xi+1
k+1 = xik+1 +

(
Ai

k +Bi
kK

i
k

) (
xi+1
k − xik

)
+ αBi

kκ
i
k + dik. (12)
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Thus, the forward pass now becomes the serial consensus sweep followed by a
parallel forward simulation on each of the Mf blocks.

Parallel DDP (Algorithm 1) combines the instruction-level parallelizations,
forward sweep, Mf multiple shooting intervals, and Mb backward pass blocks
into a single algorithm with parametrizable levels of parallelism.

4 Implementation

Our implementations were designed to target modern multi-core CPUs and
GPUs in order to take advantage of their respective parallel processing power.
A multi-core CPU can be roughly viewed as a handful of modern CPUs that
are designed to work together, often on different tasks, leveraging the multiple-
instruction-multiple-data (MIMD) computing model. In contrast, a GPU is a
much larger set of very simple processors, optimized for parallel computations
of the same task, leveraging the single-instruction-multiple-data (SIMD) com-
puting model. Therefore, as compared to a CPU processor, each GPU processor
has many more arithmetic logic units (ALUs), but reduced control logic and a
smaller cache memory (see Figure 3).

Fig. 3. High level architecture of a single CPU and GPU processor [36].

In this work we specifically targeted NVIDIA GPUs by using the CUDA
extensions to C++ and the NVCC compiler. CUDA is built around functions
called Kernels which can be launched using parallel blocks of threads on the
GPU. Each block is guaranteed to run all of its threads on the same processor
but the order of the blocks is not guaranteed. Each processor’s limited cache is
split into standard L1 cache memory and shared memory, which is managed by
the programmer and accessible by all threads in the same block. Each kernel
launch will naturally run sequentially but can also be placed in parallel streams.

We minimized memory bandwidth delays by doing most computations on
the GPU. The CPU is instead in charge of high level serial control flow for
kernel launches. We also condense as many computations onto as few kernels
as possible, a process known as kernel fusion [37], to minimize kernel launch
overhead. Finally, we make heavy use of streams and asynchronous memory
transfers to increase throughput wherever possible. For example, by computing
the Taylor approximations of the dynamics and cost in separate streams, the
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Algorithm 1 Parallel DDP

1: Initialize the algorithm and load in initial trajectories
2: while cost not converged do
3: for all Mb blocks b do in parallel
4: for k = bNb : b0 do
5: dk, (3), (9), (10) → Qk

6: if Qk
uu is invertible then

7: (4) → Kk, κk

8: (5) → Vk and derivatives
9: else

10: Increase ρ go to line 3
11: end if
12: end for
13: end for
14: for all α[i] do in parallel
15: x̃0[i] = x0
16: if Mf > 1 then
17: for k = 0 : N − 1 do
18: x̃k[i], (12) → x̃k+1[i]
19: end for
20: end if
21: for all Mf blocks b do in parallel
22: for k = b0 : bNf − 1 do
23: ũk[i] = uk + α[i]κk +Kk(x̃k[i]− xk)
24: x̃k+1[i] = f(x̃k[i], ũk[i])
25: d̃k[i] = 0
26: end for
27: k = bNf

28: if k < N then
29: ũk[i] = uk + α[i]κk +Kk(x̃k[i]− xk)
30: d̃k[i] = xk+1 − f(x̃k[i], ũk[i])
31: end if
32: end for
33: X̃[i], Ũ [i], (1), (6) → J̃ [i], z̃[i]
34: end for
35: i∗ ← arg mini J̃ [i] s.t. z̃[i], d̃[i] satisfy (7), (11)
36: if i∗ 6= ∅ then
37: X,U, d← X̃[i∗], Ũ [i∗], d̃[i∗]
38: else
39: Increase ρ go to line 3
40: end if
41: Taylor approximate the cost at X,U
42: Taylor approximate the dynamics at X,U
43: end while

Backward
Pass

Consensus
Sweep

Forward
Simulation

Forward
Pass

Next
Iteration
Setup
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throughput of the next iteration setup step was much closer to the maximum of
the running times for those calculations than the sum.

We also found that the general purpose GPU matrix math libraries (e.g.,
cuBLAS) are optimized for very large matrix operations, while DDP algorithms
require many sets of serial small matrix operations. We implemented simpler
custom fused kernels which provide a large speedup by keeping the data in
shared memory throughout the computations. We further optimized our code by
precomputing serial terms during parallel operations. For example, during the
backward pass, A,B,K, and κ were loaded into shared memory, so computing
A + BK and Bκ only added a small overhead to the paralellizable backward
pass, while greatly reducing the time for the serial consensus sweep.

Our multi-threaded CPU implementation leveraged the thread library which
supports the launching of parallel threads across CPU cores. Threads run with
their own set of registers and stack memory. Like GPU blocks, allocation of CPU
threads to processor cores, and context switches between threads running on the
same core, are scheduled by the operating system. Also, since these threads run
on standard CPUs, there is no explicit management of cache memory.

The CPU implementation reused the same baseline code to leverage the op-
timizations made during the GPU implementation and to provide an equivalent
implementation for comparison. However, for optimal performance, we had to
introduce serial loops within threads to limit the number of threads to a small
multiple of the number of CPU cores.

We made use of hand derived analytical dynamics and cost functions for
the quadrotor system to maximize performance. For the manipulator, we imple-
mented a custom GPU optimized forward dynamics kernel based on the Joint
Space Inertia Inversion Algorithm, the fastest parallel forward dynamics algo-
rithm for open kinematic chain robots with a very small number of rigid bod-
ies [38]. For better direct comparisons, we used a looped version of that code
for the CPU implementation.1 Finally, following the state of the art, we imple-
mented the iLQR variant of DDP.

5 Results

Three sets of experiments were conducted to evaluate the performance of paral-
lel iLQR across different problems, computing architectures, and levels of paral-
lelism. We ran our experiments on a laptop with a 2.8GHz quad-core Intel Core
i7-7700HQ CPU, a NVIDIA GeForce GTX 1060 GPU, and 16GB of RAM. In
our experiments we initialized the algorithm with a gravity compensating input.
Both the GPU and CPU implementations used the same scheme for updating ρ
and the same set of options for α.

We report convergence results (cost as a function of time and iteration), the
time per iteration, and tracking error where appropriate. Total cost reduction as
a function of time is a particularly useful metric when deploying algorithms in

1 We note that while the Joint Space Inertia Inversion Algorithm is not the fastest
serial forward dynamics algorithm, the difference is not large for a 7-Dof manipulator.
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MPC scenarios where there is typically a fixed control time budget. To ensure
our results were representative for each experiment, we ran 100 trials with noise
∼ N (0, σ2) applied to the velocities of the initial trajectory. Our solver imple-
mentations and these examples can be found at http://bit.ly/ParallelDDP.

5.1 Quadrotor

We first considered a quadrotor system with 4 inputs corresponding to the thrust
of each rotor and 12 states corresponding to the position and Euler angles, along
with their time derivatives. We solved a simple flight task from a stable hover
0.5 m above the origin to a stable hover at the same height and at 7 m in the x
and 10 m in the y direction. We used a quadratic cost function of the form:

J =
1

2
(xN −xg)TQN (xN −xg) +

N−1∑
k=0

1

2
(xk−xg)TQ(xk−xg)+

1

2
uTkRuk, (13)

setting Q = blkdiag(0.01× I3x3, 0.001× I3x3, 2.0× I6x6), R = 5.0× I4x4, QN =
1000× I12x12. We solved over a 4 second trajectory with N = 128, MF = MB =
M = 1, 2, 4, 8, 16, 32, 64, a 3rd-order Runge-Kutta integrator, and σ = 0.001.

Figure 4 reveals that the delayed flow of information due to the algorithm-
level parallelizations (stale CTG information, fixed starting state of each simu-
lation block) generally leads to smaller steps and therefore slower cost reduction
per iteration. For example, for the CPU implementation, the median line search
depth for M = 1 was between 0 and 1, while for M = 4 it was 5. It also shows
that the GPUs ability to run a fully parallel line search, as compared to the
CPUs partially parallel approach (due to limited number of hardware cores),
allows the GPU to select a better “best line search” option and descend faster
while avoiding local minima. For example, for the GPU implementation, the
median line search depth for M = 1 was also between 0 and 1, while for M = 4
it was only 3.2

The median time per iteration for each of the parallelization options for both
implementations is shown in Figure 5. Our observed per-iteration times of under
3 ms for all GPU and CPU cases are comparable to state-of-the-art reported
rates of 5-25 ms [15] on a similar UAV system. These results also match our
expectations that the higher clock rate would allow the CPU to compute the
serial consensus sweep faster while the GPU is able to leverage its increased
number of cores to compute the parallel next iteration setup step faster.

For the CPU implementation, we also observed that parallelization can im-
prove the speed of the backward pass until the number of available cores (4) is
saturated at which point performance stagnates. For the forward simulation, we
found that slower paths to convergence, and thus deeper line searches, quickly
outweighed the running time gains due to parallelism. This is most evident in

2 These trends were also mirrored in the success rate of the algorithm. While 0% of
CPU and GPU runs failed for M = 1, 2, 4, and on the GPU only 5% failed for M ≥ 8,
on the CPU over 30% failed for M ≥ 8.

http://bit.ly/ParallelDDP
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Fig. 4. Median cost vs iteration for the quadrotor experiment.

Fig. 5. Median time per iteration for the quadrotor experiment.

the increase in the time for the forward simulation as M grows from 8 to 64. By
contrast, the GPU implementation is able to run the line search fully in parallel,
which led to reductions in running time for both the backward pass and the for-
ward simulation as M increases. However, there are diminishing returns. First,
kernel launch overhead begins to dominate the running time as parallelization
is increased. Second, since the next iteration setup is always fully parallelized,
and for each line search option the consensus sweep cannot be parallelized, the
running times for both steps remain constant. In fact, by the M = 64 case, the
consensus sweep was almost a third of the total computational time as compared
to only 17 percent for the M = 2 case.

This increased speed per iteration and decreased convergence rate leads to
a level of parallelism which optimizes the time to convergence, as shown in
Figure 6. There we find that in the M = 1 and M = 2 cases, the CPU is
able to leverage its higher clock rate to outperform the GPU. However, the
GPU is able to better exploit the algorithm-level parallelism and outperform the
CPU for M > 2. For this experiment the dynamics computations required are
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simple enough, and the problem size is small enough, that the fastest approach
is CPU M = 1 indicating that on simple problems the overhead from parallelism
outweighs the gains.

Fig. 6. Median cost for the first 20 milliseconds of the quadrotor experiment.

5.2 Manipulator

Fig. 7. Start (left) and goal (right) states for
the manipulator experiment.

We then consider the Kuka LBR
IIWA-14 manipulator which has
7 inputs corresponding to torques
on the 7 joints. The nominal con-
figuration is defined as the manip-
ulator pointing straight up in the
air. We solved a trajectory opti-
mization task from a start state to
a goal state across the workspace
depicted in Figure 7. We set Q =
blkdiag(0.01×I7x7, 0.001×I7x7),
R = 0.001 × I7x7, QN = 1000 ×
I14x14. We solved the problem
over a 0.5 second trajectory with N = 64, MF = MB = M = 1, 2, 4, 8, 16, 32,
a 1st-order Euler integrator, and σ = 0.001.

Figure 8 shows that parallelism leads to speedups in time per iteration on the
GPU and CPU. We see that again on the GPU both the forward simulation and
backward pass decrease in time as M increases. On the CPU we again see that
the backward pass decreases in time until the CPU runs out of cores at M = 4,
while the forward simulation time varies non-monotonically for different values
of M depending on the parallelization speedup and the depth of line search
slowdown. With all cases having a median time per iteration under 5 ms, both
our GPU and CPU implementations are able to perform at speeds reported as
state-of-the-art [9,12,13,14,15,16].
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Fig. 8. Median time per iteration for the manipulator experiment.

Unlike in the quadrotor example, the more computationally expensive for-
ward dynamics and increased problem size in this example led to performance
gains from parallelism as shown in Figure 9. We find that the GPU is able to
successfully exploit the algorithm-level parallelism with faster convergence from
M = 2, 4, 8, 16 than M = 1 and that M = 32 on the GPU converges in about the
same time as the CPU’s fastest standard option, M = 2. We also tested various
combinations of the number of blocks for the forward and backward passes until
we found the best possible CPU variant for this problem (Mf = 2 and Mb = 4)
and found that GPU M = 2, 4, 8, 16 still converge faster.

Fig. 9. Median cost for the first 70 milliseconds of the manipulator experiment.

Taken together, the results from the quadrotor and manipulator suggest that
practical performance improvements can be obtained through large-scale paral-
lelization and GPU implementations, but that the tradeoffs between the degree
of parallelism and convergence speed are strongly dependent on system dynamics
and problem specification.
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5.3 Model-Predictive Control for the Manipulator

To better understand these results and the applicability of our GPU implemen-
tation for online model-predictive control, we conducted a goal tracking experi-
ment with the manipulator in simulation. At each control step we ran our fastest
solver, the GPU M = 4 implementation, with a maximum time budget of 10 ms.
We warm started the iLQR algorithm by shifting all variables from the previous
solve by the control duration and then rolling out a new initial state trajectory
starting from the current measured state (with a gravity compensating input in
the trailing time steps). During optimization periods, we simulated the system
forward in realtime using the previously computed solution.

We considered a end effector pose tracking task where the goal moved con-
tinuously along a figure eight path. We modified our cost function to include the
end effector error:

J =
1

2
(ee(qN )− eegoal)

TQN (ee(qN )− eegoal) +
1

2
q̇TN Q̇N q̇N

N−1∑
k=0

1

2
(ee(qk)− eegoal)

TQ(ee(qk)− eegoal) +
1

2
q̇Tk Q̇q̇k +

1

2
uTkRuk,

(14)

where we include the quadratic penalty on q̇ to encourage a stable final posi-
tion. We set Q = blkdiag(0.01 × I3x3, 0 × I3x3), R = 0.0001 × I7x7, QN =
blkdiag(1000× I3x3, 0× I3x3), Q̇ = 0.1× I7x7, Q̇N = 10× I7x7. At each control
step we solved the problem using a first-order Euler integrator and N = 64 knot
points over a 0.5 second trajectory horizon. The full figure eight trajectory we
were tracking had a period of 10 seconds. To initialize the experiment, we held
the first goal pose constant until both ||ee(q)− eegoal||22 and ||q̇||22 were both less
than 0.05 at which point the goal began moving along the figure eight path.

Figure 10 shows the trajectory computed by running the MPC experiment
starting from an initial vertical state. Aside from confirming that good tracking
performance is possible, we observed that the bookkeeping needed to implement
MPC on a GPU does add delays in the control loop. In particular, the shifting
of the previous variables and rolling out from the updated starting state takes
almost 1.4 ms on average. Since GPU M = 4 is able to compute iterations in
about 1.2 ms, this MPC initialization step is quite expensive. We expect there
are potential avenues for improving this overhead through better software engi-
neering (e.g., by using circular buffers to reduce memory copy operations). We
plan to investigate this further in future experiments.

6 Conclusion and Future Work

We presented an analysis of a parallel multiple-shooting iLQR algorithm that
achieves state-of-the-art performance on example trajectory optimization and
model-predictive control tasks. Our results show how parallelism can be used
to increase the convergence speed of DDP algorithms in some situations, but
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Fig. 10. Executed trajectory (red) vs. goal trajectory (blue) for the MPC experiment.

that tradeoffs between per-iteration speed and convergence behavior manifest in
problem-specific ways.

Several directions for future research remain. First, we used analytical and
numerical dynamics methods specific to the systems we considered to ensure
good performance on the GPU. More general robot dynamics packages designed
for GPUs that can achieve a satisfactory level of physical realism would be a valu-
able tool for the development and evaluation of parallel trajectory optimization
methods. Second, it would be interesting to consider the performance impact of
adding nonlinear constraints to parallel iLQR using augmented Lagrangian [39]
or QP-based methods [40].

Other types of trajectory optimization formulations and algorithms may be
more suitable for large-scale parallelization on GPUs, such as direct transcription
and solvers based on the alternating direction method of multipliers [41]. We
intend to broaden our investigation beyond DDP algorithms in future work.
Finally, we would like to evaluate parallel trajectory optimization algorithms for
MPC on hardware using low-power mobile parallel compute platforms such as
the NVIDIA Jetson.
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