
Realtime Model Predictive Control using Parallel DDP on a GPU
Brian Plancher and Scott Kuindersma

The Big Picture:
We analyze the benefits and tradeoffs of
parallelization by comparing a GPU and multi-
threaded CPU implementation of a multiple-shooting
variant of Differential Dynamic Programming (DDP)
using a Kuka LBR IIWA-14 manipulator. Our results
suggest that GPU-based solvers can offer faster per-
iteration computation time and faster convergence in
some cases, but in general tradeoffs exist between
convergence behavior and degree of algorithm-level
parallelism. We also find that in an online Model
Predictive Control (MPC) setting this approach is
robust to the presence of model discrepancies and
communication delays. Finally, we find that higher
control rates generally lead to better tracking across a
range of parallelization options.

This work was supported by a Draper Internal 
Research and Development grant and by the 
National Science Foundation Graduate Research 
Fellowship (under grant DGE1745303). Any 
opinions, findings, conclusions, or 
recommendations expressed in this material are 
those of the authors and do not necessarily reflect 
those of the funding organizations.

Parallel DDP:
Parallel DDP takes the classic DDP algorithm and
induces algorithm level parallelism by replacing the:
• Serial backward pass with an M block parallel solve
• Serial forward pass with a fast serial consensus

sweep using linearized dynamics followed by an M
leg multiple shooting forward simulation.

Parallel DDP uses instruction level parallelism to
compute in parallel the:
• Taylor approximations of the cost and dynamics
• A set of possible line search iterates

Giftthaler et. al. 2017
Farshidian et. al. Humanoids 2017

Plancher and Kuindersma WAFR 2018𝑥𝑥

𝑥ே

𝑀ଵ

𝑀

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

5 7.5 10 12.5 15 17.5 20

Av
er

ag
e 

Tr
ac

ki
ng

 E
rr

or
 (c

m
)

Average Control Step Duration (ms)

3

4

5 6

7
8

3

4

5 6
7

8
9

10

11

4

5
6

7
8

9
10

12
13 14 15

GPU M=1 GPU M=2 GPU M=4
1 Numbers indicate solver 

iterations per control step

Hardware Results:
We ran an online MPC figure-eight goal tracking
experiment and found that:
• This approach was robust to model discrepancies

and communication delays
• Faster control steps led to reduced tracking error
• Solvers started to fail when they had about as many

(or less) iterations as the amount of algorithm level
parallelism (e.g., M = 4 with 3 or less iterations)

Simulation Results:
We found that parallelism:
• Increased the speed of the Taylor approximations
• Had diminishing returns for the forward simulation

and backward pass
• Was only effective while there were available cores
• Decreased the convergence rate leading to non-

monotonic forward simulation times on the CPU

These tradeoffs led to the GPU outperforming the
CPU across parallelization options

0

250

500

750

1000

1250

1500

1750

2000

0 5 10 15 20 25 30 35 40

Co
st

Elapsed Time (ms)

GPU M=1
GPU M=2

GPU M=8
GPU M=4

CPU M=1
CPU M=2

CPU M=8
CPU M=4

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00

1 2 4 8 16 32 1 2 4 8 16 32
GPU M CPU M

Ti
m

e 
pe

r i
te

ra
tio

n 
(m

s)

Backward Pass
Forward Simulation
Consensus Sweep

Taylor Approximations


