
GPU Acceleration for Real-time, Whole-body,
Nonlinear Model Predictive Control

A dissertation presented

by

Brian Kyle Plancher

to

the Harvard John A. Paulson School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Engineering Sciences

Harvard University

Cambridge, Massachusetts

April 2022

© 2022 Brian Kyle Plancher

All rights reserved.

Dissertation Advisors:
Professor Vijay Janapa Reddi
Professor Scott Kuindersma

Author:
Brian Kyle Plancher

GPU Acceleration for Real-time, Whole-body,
Nonlinear Model Predictive Control

Abstract

Whole-body, nonlinear model predictive control (MPC) refers to the control strategy where a

robot’s state and input trajectories are continually optimized over a finite time horizon while

taking into account the robot’s full nonlinear dynamics. This has been referred to as the

“Holy Grail” of robot motion planning and control, as it can enable robots to dynamically

compute optimal trajectories and adapt to changes in their environment. Unfortunately, the

underlying trajectory optimization algorithms traditionally used to solve these problems are

computationally expensive and often too slow to run in real-time. Compounding this issue,

the impending end of Moore’s Law and the end of Dennard Scaling have led to a utilization

wall that limits the performance a single CPU chip can deliver, requiring computer scientists

to look beyond the CPU to exploit large-scale parallelism available on alternative computing

platforms such as GPUs. This dissertation address these challenges by exposing, analyzing, and

leveraging the structured sparsity and parallelism patterns found in the numerical optimization

and rigid body dynamics algorithms commonly used for whole-body, nonlinear MPC. Through

careful algorithmic refactoring and re-design, this work exploits these patterns to enable

real-time MPC performance through GPU-acceleration. It also validates the feasibility of this

approach in the presence of model discrepancies and communication delays between the robot

and GPU by deploying the resulting implementations onto a physical manipulator arm. Overall,

this dissertation finds that GPU acceleration can provide nearly order-of-magnitude speedups,

and open-sources its implementations to aid the wider robotics community in accelerating

both robotics computations and application development timelines.

iii

Contents

Title Page i

Copyright ii

Abstract iii

Contents iv

List of Tables and Figures vi

Acknowledgments and Dedication xii

1 Introduction 1

2 Model Predictive Control Background 4
2.1 Model Predictive Control (MPC) . 4
2.2 Trajectory Optimization . 5
2.3 Differential Dynamic Programming (DDP) . 7
2.4 Direct Trajectory Optimization . 9

2.4.1 Merit Functions . 11
2.4.2 Schur Complement Direct Trajectory Optimization 12
2.4.3 Krylov Subspace Methods . 12
2.4.4 Parallel Preconditioners . 14

3 Computer Hardware Background 15
3.1 The Need for Parallelism . 15
3.2 Multi-Core CPU . 16
3.3 Graphics Processing Unit (GPU) . 17
3.4 Hardware-Software Co-Design . 19

4 MPC with GPU Accelerated DDP 21
4.1 Related Work . 22
4.2 Parallelizing DDP . 23

4.2.1 Instruction-Level Parallelization . 23
4.2.2 Algorithm-Level Parallelization . 24
4.2.3 The Parallel DDP Algorithm . 26
4.2.4 Implementation Details . 26

4.3 Exploring the Benefits and Limitations of Parallelism 29

iv

4.3.1 Quadrotor . 29
4.3.2 Manipulator . 32

4.4 Whole-body, Nonlinear MPC Experiments . 35
4.4.1 Simulation Experiments . 35
4.4.2 Hardware Experiments . 37

4.5 Conclusion and Future Work . 38

5 GRiD: GPU Accelerated Rigid Body Dynamics with Analytical Gradients 40
5.1 Related Work . 42
5.2 Rigid Body Dynamics Background . 43
5.3 The GRiD Library . 44
5.4 GRiD’s Design and Optimizations . 45

5.4.1 Key Features of Rigid Body Dynamics Algorithms 46
5.4.2 Mapping Rigid Body Dynamics Algorithms to the GPU 48

5.5 Benchmark Timing Results . 53
5.5.1 Proof-Of-Concept Evaluations . 54
5.5.2 GRiD Benchmark Evaluations . 59

5.6 Conclusion and Future Work . 64

6 Towards MPC with GPU Accelerated Direct Trajectory Optimization 66
6.1 Related Work . 66
6.2 GPU-Accelerated Direct Trajectory Optimization 67

6.2.1 A Structure Exploiting PCG Solver for the GPU 68
6.2.2 A Parallel Block-Tridiagonal Preconditioner 68
6.2.3 Optimizing for the Trajectory Optimization Problem 70
6.2.4 The Overall Algorithm . 72

6.3 Preliminary Experiments . 73
6.3.1 Proof-Of-Concept Parallel Preconditioner Evaluation 73
6.3.2 Proof-Of-Concept Nonlinear MPC Evaluation 77

6.4 Conclusion and Future Work . 79

7 Conclusion and Future Work 80
7.1 Hardware Acceleration Beyond the GPU . 81

References 83

Appendix A Additional Rigid Body Dynamics Algorithms and Refactorings 96

Appendix B CPU Optimized Dynamics Gradients 100

Appendix C FGPA and ASIC Optimized Dynamics Gradients 102

Appendix D Reusable Threads 106

v

List of Tables

5.1 Algorithmic features of the gradient of rigid body dynamics and qualitative
assessments of their suitability for different target hardware platforms. We
find that in general, rigid body dynamics algorithms when used in whole-body,
nonlinear MPC algorithms are naturally well suited for the CPU, but not
for the GPU, outside of opportunities for coarse-grained parallelism between
computations. 49

5.2 Single Computation Latency in µs Per Algorithm and Robot (ID = Inverse Dynamics,

Minv = Direct Minv, FD = Forward Dynamics and ∇ indicates the gradient of that algorithm) . . 60

vi

List of Figures

2.1 A graphical depiction of MPC. On the left, an initial optimal trajectory shown
in blue is computed from a start state, xs, shown in green to a goal state, xg,
shown in yellow. In the center, the first step in the trajectory is executed on the
real system resulting in a new start state that deviates slightly from the second
state in the initial optimal trajectory. On the right, a new optimal trajectory
shown in orange is constructed from the new start state to the goal state and
the process repeats itself. 5

3.1 48 years of processor trends plotted on a log scale. The data shows how
CPU clock speed peaked in 2005 and has remained relatively constant since.
At the same time while single threaded performance, indicated by SpecINT
benchmark scores, has increased since 2005, the rate of increase has slowed
dramatically. In response, hardware vendors have drastically increased the
number of CPU cores on each processor. Original data up to the year 2010
collected by M. Horowitz, F. Labonet, O. Shacham, K. Olukotun, L. Hammond,
and C. Batten. Data for 2010-2019 collected by K. Rupp. All data available at
https://github.com/karlrupp/microprocessor-trend-data 16

3.2 High level architecture of a multi-core CPU. Each core has its own local L1
cache, control logic, and arithmetic and logic units, while all cores share access
to a larger L2 cache and DRAM. 17

3.3 High level architecture comparing a multi-core CPU (left) and GPU (right)
processor. Importantly, a multi-core CPU has increased cache size and control
logic, while a GPU has many more arithmetic and logic units (ALUs). 18

3.4 Co-design requires computer scientists to propagate up the hardware features
and down the algorithmic features to redesign and refactor algorithms in order
to better map algorithms to hardware. Here we provide an incomplete list of
some relevant algorithmic and hardware features. We explore these kinds of
features in detail in the remainder of this dissertation. 20

vii

https://www.spec.org/benchmarks.html
https://github.com/karlrupp/microprocessor-trend-data

4.1 Graphical representation of the backward pass algorithm-level parallelizations
showing information flowing within each parallel block during each iteration
and moving across adjacent block boundaries between iterations. 24

4.2 Graphical representation of the forward pass algorithm-level parallelizations
showing information flowing within each block during each forward simulation
and along the entire trajectory through each forward sweep. 25

4.3 Median cost vs iteration for the quadrotor experiment. We find that, for both
the CPU and GPU, as the amount of algorithm-level parallelism increases, the
convergence rate decreases. 30

4.4 Median time per iteration for the quadrotor experiment. We find that on the
GPU, as the level of parallelism, M , increases, the time per iteration decreases,
albeit with diminishing marginal returns. The CPU speedups in the backward
pass stall at M = 4 as the CPU only has 4 cores, while the forward simulation
is slower, for increased M , due to deeper serial line searches. 31

4.5 Median cost for the first 20 milliseconds of the quadrotor experiment. We find
that the decreases in time per iteration gained from parallelism are outweighed
by the decreases in convergence rate indicating that on simple problems, the
overheads from parallelism outweighs the gains. 32

4.6 Start (left) and goal (right) states for the manipulator experiment. 33
4.7 Median time per iteration for the manipulator experiment. We again find that

the GPU gets faster with increased parallelism. In this case the CPU also gets
faster until M = 4. Also the fully parallel next iteration setup is much faster
on the GPU than CPU. Taken together all of these effects show the increased
speedups available from parallelism as the total computational complexity grows. 34

4.8 Median cost for the first 70 milliseconds of the manipulator experiment. We
find that the GPU is able to successfully exploit the algorithm-level parallelism
with faster convergence from M = 2, 4, 8, 16 than M = 1 and that M = 32

on the GPU converges in about the same time as the CPU’s fastest standard
option, M = 2. This all shows the power of parallelism for improving the overall
performance of computationally expensive tasks. 34

4.9 Executed trajectory (red) vs. goal trajectory (blue) for the MPC experiment,
showing good tracking performance for our GPU implementation of PDDP in
simulation. 36

4.10 The Kuka arm during a figure eight goal tracking experiment. 37

viii

4.11 Tracking error for a range of solvers vs. control step duration. We found
that good tracking performance is possible for a wide range of solvers, and
a faster control step duration generally had better tracking performance. As
such, beyond some minimal level of optimality, while a more optimal solution
was always preferred, delivering a sub-optimal solution faster outperformed a
slow-to-update more optimal solution. 38

5.1 Recent research indicates that rigid body dynamics gradients consume 30-90%
of the total computational time of whole-body, nonlinear MPC [1; 2; 3]. . . . 40

5.2 The GRiD library package ecosystem takes an input URDF file and outputs
optimized CUDA C++ code which can be validated against reference outputs
and benchmarked for performance. 44

5.3 An example robot topology. 50
5.4 Latency of one computation of the gradient of rigid body dynamics for the

Kuka manipulator in the CPU and GPU baseline implementations, as compared
to our proof-of-concept optimized GPU implementation. We find that our
proof-of-concept outperforms the baseline by 6.4x but is still 2.5x slower than
the CPU. 55

5.5 Runtime of N = 16, 32, 64, and 128 computations of our accelerated implemen-
tations of the dynamics gradient kernel for the Kuka manipulator using different
problem partitionings between the CPU and [G]PU coprocessor: the [s]plit,
[f]used, and [c]ompletely-fused kernels. We find that removing synchronization
points and moving more computations onto the GPU reduces overall latency. 57

5.6 Runtime of N = 16, 32, 64, and 128 computations of the accelerated dynamics
gradient kernels for the Kuka manipulator for the [C]PU and [G]pu using the
[c]ompletely-fused kernel. We find that the GPU outperforms the CPU by 1.2x
(N=16) to 3.0x (N=128). 58

5.7 The scaling of single computation latency from IIWA to HyQ and IIWA to Atlas
for both the Pinocchio CPU baseline and the GRiD GPU library for various
rigid body dynamics algorithms (ID = Inverse Dynamics, Minv = Direct Minv,
FD = Forward Dynamics and ∇ indicates the gradient of that algorithm). We
also plot the scaling of the robots’ dof as a measure of their increased complexity.
We find that the GPU is able to scale to more complex robots and algorithms
better than the CPU by taking advantage of fine-grained parallelism induced by
independent robot limbs and the independent columns of gradient computations. 60

ix

5.8 Latency (including GPU I/O overhead) for N = 16, 32, 64, 128, and 256
computations of the gradient of forward dynamics for both the Pinocchio CPU
baseline and the GRiD GPU library for various robot models (IIWA, HyQ,
and Atlas). Overlayed is the speedup (or slowdown) of GRiD as compared to
Pinocchio both in terms of pure computation and including I/O overhead. We
find that in most cases the GPU outperforms the CPU and that outperformance
increases as N increases. However, I/O overhead is an increasing concern as N

grows. 62

6.1 Log scale box plots showing the range of the magnitude of the Eigenvalues in the
Schur complement matrix for each of the four dynamical systems both for the
original system (in orange), as well as after apply the various preconditioners
from the literature (in blue), and our symmetric stair preconditioner (in green).
We find that, for all four systems, all of the preconditioners reduce the overall
magnitude of the Eigenvalues, and group them closer together, and that the
symmetric stair preconditioner is the only preconditioner which keeps the
spectral radius ≤ 1. 75

6.2 A log scale bar chart showing the condition number of the Schur complement
matrix for each of the four dynamical systems both for the original system (in
orange), as well as after apply the various preconditioners from the literature (in
blue), and our symmetric stair preconditioner (in green). We find that, for all
four systems, all of the preconditioners improve the numerical conditioning and
that the symmetric stair preconditioner results in the lowest condition number
outperforming the best alternatives by more than 2x. 75

6.3 A log scale bar chart showing the average number of inner (preconditioned)
conjugate gradient iterations needed to solve the initial trajectory optimization
problems for each of the four dynamical systems both for the original problem
(in orange), as well as after apply the various preconditioners from the literature
(in blue), and our symmetric stair preconditioner (in green). We find that, for
all four systems, all of the preconditioners reduce the number of iterations and
that the symmetric stair preconditioner outperforms the best alternative by up
to 1.6x. 76

x

6.4 On the left, a scatter plot showing the resulting pendulum trajectory when
using all three approaches to solve the trajectory optimization problem at
each control step: our symmetric stair, preconditioned conjugate gradient,
schur complement based solver (Schur-PCG-SS in green), the baseline standard
factorization approach to solve the direct trajectory optimization problem
(KKT-F in orange), and the baseline iLQR algorithm (iLQR in blue). On the
right, the corresponding input torques per control step. We find that not only
are all three approaches are able to converge to the goal position, but that our
approach produces an almost identical solution to the KKT-F baseline. 78

6.5 On the left, a scatter plot showing the error between the current state at
each control step and goal state of the cart pole experiment using all three
approaches to solve the trajectory optimization problem: our symmetric stair,
preconditioned conjugate gradient, schur complement based solver (Schur-PCG-
SS in green), the baseline standard factorization approach to solve the direct
trajectory optimization problem (KKT-F in orange), and the baseline iLQR
algorithm (iLQR in blue). On the right, the corresponding input torques per
control step. We find that not only are all three approaches able to converge to
the goal state position, but that our approach again also produces an almost
identical solution to the KKT-F baseline. 78

7.1 Latency of one computation of the gradient of rigid body dynamics for the Kuka
manipulator for our proof-of-concept optimized GPU implementation, optimized
CPU baseline, and a proof-of-concept FPGA and ASIC implementation. We
find that FGPAs and ASICs can significantly accelerate computations beyond
the speeds available on CPUs and GPUs. 82

C.1 A range of fixed-point numerical types, highlighted in green, delivered com-
parable numerical performance, converging to the same final trajectory cost
as the baseline 32-bit floating-point numerical datatype used in our CPU and
GPU implementations, highlighted in grey. Types that resulted in algorithms
that did not converge to an equivalent solution are highlighted in Orange. The
various fixed-point types are labeled as “Fixed{integer bits, decimal bits}”. . . 103

C.2 An example of a tree of multipliers and adders for a dot product with a dense
and known sparse vector. The known sparse vector allows us to reduce a 4-level
tree with 6 multiplications and 5 additions to a 3-level tree with 3 multiplications
and 2 additions. 105

xi

Acknowledgments

This work would not have been possible without. . .

. . .my advisor, Professor Vijay Janapa Reddi. Thank you for taking a chance on a roboticist

interested in exploring the intersection of robotics and computer architecture, for helping me develop

my passion for teaching by providing me with amazing opportunities to teach lectures and co-develop

courses, both online and in-person, and for being an all around amazing advisor, spending far too

much time helping me wordsmith my faculty applications, and constantly pushing me to grow as a

researcher, mentor, teacher, advisor and person.

. . .my co-advisor, Professor Scott Kuindersma. Thank you for taking a chance on a management

consultant trying to get into robotics, for continuing to support me even after you had left academia,

and for initially enabling, and supporting me in pursuing my passion for teaching.

. . .my co-author and unofficial co-advisor, Professor Zachary Manchester. Thank you for not

only supporting me extensively in the first couple of months of my masters, when I was trying to get

up to speed, but also for continuing to support me and welcome me into your robotics labs remotely,

enabling me to stay deeply plugged into robotics.

. . .my engineering community. To my undergraduate thesis advisor, Professor Greg Morrisett,

thank you for also taking a chance supporting a former economics major who switched late into

computer science. To Professors Gu-Yeon Wei and David Brooks, thank you for all of your guidance

and support and for originally showing me that there is more to fast computing than good software. To

all of my collaborators – with a special shout-out to Sabrina M. Neuman – as well as all of the members

of the Harvard Agile Robotics, Edge Computing, and VLSIArch Labs, and the Stanford/CMU Robotic

Exploration Lab, thank you for all of your useful feedback, insights, help, and friendship throughout

this process.

. . .my K-12 teachers, especially Ms. Boyea, and Mr. Yoon. Thank you for instilling in me both a

passion for learning, and a respect for hard work.

. . . my family and friends. Thank you for your unwavering, friendship, love, and support.

This work was supported by an Internal Research and Development grant from Draper, Inc. and
by the National Science Foundation Graduate Research Fellowships Program (GRFP) under Grant
DGE1745303. Any opinions, findings, conclusions, or recommendations expressed in this material are
those of the authors and may not reflect those of the funding organizations.

xii

To mom, dad, pop, ah-ah, grammy, gramps, Jamie, and Megan, who have always
been there to nurture, support, and guide me on the journey of life.

To Tess and Alvin, who light up every morning with a smile, a wiggle, and
a bark, and always help remind me what really matters.

To Annie, whose unconditional love and support makes me the best me that
I can be.

xiii

Chapter 1

Introduction

Whole-body, nonlinear model predictive control (MPC) refers to the control strategy where a

robot’s state and input trajectories are continually optimized over a finite time horizon while

taking into account the robot’s full nonlinear dynamics. This has been referred to as the

“Holy Grail” of robot motion planning and control [4], as it can enable robots to dynamically

compute optimal trajectories and adapt to changes in their environment. Unfortunately, this

approach suffers from two fundamental constraints that limit its current application. First,

this approach requires the solution of non-convex optimization problems, which often results

in locally optimal solutions, and makes the algorithms extremely sensitive to hyperparameter

choices. Second, even if these non-convexity issues can be overcome, the trajectory optimization

algorithms traditionally used to solve these problems are computationally expensive and often

too slow to run in real-time [3; 4].

Compounding this second issue, the impending end of Moore’s Law and the end of Dennard

Scaling have led to a utilization wall that limits the performance a single CPU chip can

deliver [5; 6]. As such, for computationally bounded algorithms, like whole-body, nonlinear

MPC, computer scientists have had to look beyond the CPU to exploit large-scale parallelism

available on alternative computing platforms such as GPUs. This has led to, e.g., significant

1

performance improvements in the field of machine learning [7].

This dissertation address these computational challenges by exposing, analyzing, and leveraging

the structured sparsity and parallelism patterns found in algorithms commonly used for whole-

body, nonlinear MPC. Through careful algorithmic refactoring and re-design, my co-authors

and I exploit these computational patterns in numerical optimization and rigid body dynamics

algorithms to enable real-time MPC performance through GPU-acceleration. We also validate

the feasibility of this approach in the presence of model discrepancies and communication

delays between the robot and GPU by deploying the resulting open-source algorithms and

implementations onto a physical manipulator arm. We also note that these algorithms and

implementations can be used to accelerate additional state-of-the-art motion planning and

control approaches that leverage offline MPC as a sub-routine to efficiently develop trajectory

libraries and learned policies [8; 9; 10; 11; 12; 13; 14].

Throughout this dissertation, we use the process of Hardware-Software Co-Design [15] to

ensure that our algorithms and implementations take advantage of the strengths and minimize

the weaknesses of the CPUs and GPUs on which they are run. As such, we begin, in Chapter 2,

by defining the three step algorithmic structure and underlying mathematical computations

of the trajectory optimization algorithms that are commonly used for whole-body, nonlinear

MPC: 1) approximate the cost and dynamics functions; 2) compute an update to the controls

(and states); and 3) apply the update while ensuring improvement. We also, in Chapter 3,

provide an introduction to multi-core CPU and GPU hardware, revealing the ability for the

GPU to provide additional performance through large-scale parallelism at the cost of requiring

more structured and naturally parallel algorithms. Combined, these two chapters set the stage

for the algorithmic refactoring and re-design done in the later chapters to enable real-time

performance through GPU acceleration.

We then expose the opportunities and limitations of both instruction-level and algorithm-level

parallelism in the context of Differential Dynamic Programming (DDP) algorithms and demon-

strate that higher MPC control rates generally lead to better real-world tracking performance.

2

This is done through the development of a GPU-optimized Parallel DDP solver with faster than

state-of-the-art performance which is used to perform the first MPC experiments on physical

robot hardware where the solver is running entirely on the GPU. These results, detailed in

Chapter 4, show that not only is there a need for even faster trajectory optimization solvers to

improve real-world performance, but also that performance tradeoffs exist between convergence

behavior and time per iteration as the degree of algorithm-level parallelism increases, limiting

the improvements from parallelism for DDP based algorithms.

We then demonstrate how algorithmic refactoring can expose hardware compatible computa-

tional patterns in rigid body dynamics algorithms and unlock the ability for the wider robotics

community to run whole-body nonlinear MPC entirely on the GPU with their own custom

robots. This is done through the development of GRiD, the first open-source GPU-accelerated

spatial-algebra-based [16] rigid body dynamics library with analytical gradients. As detailed in

Chapter 5, GRiD generates refactored code that outperforms state-of-the-art, multi-threaded,

code-generated CPU libraries by as much as 7.2x when performing multiple computations

of rigid body dynamics and their gradients and maintains as much as a 2.5x speedup when

accounting for the I/O communication overhead between the CPU and GPU.

We then develop a sparsity exploiting and parallel friendly symmetric stair preconditioner for

optimal control problems, leading to improvements in condition number, spectral radius, and

iterations-to-converge on standard trajectory optimization problems. As detailed in Chapter 6,

this not only reduces the average number of inner conjugate gradient (CG) iterations by a

factor of up to 3.1x during trajectory optimization solves, but also enables the design of a

GPU-optimized direct trajectory optimization solver with a structure exploiting parallel CG

solver that can be used for GPU-accelerated, whole-body, nonlinear MPC.

Finally, this dissertation concludes in Chapter 7 and introduce opportunities for further

acceleration by moving beyond the GPU to more custom parallel hardware architectures. We

detail preliminary results indicating that FPGAs and custom ASICs can provide as much as

100x latency speedups over GPUs on rigid body dynamics computations.

3

https://github.com/robot-acceleration/grid

Chapter 2

Model Predictive Control

Background

In this chapter we provide background information on whole-body, nonlinear model predictive

control and the trajectory optimization algorithms commonly used to solve their underlying

nonlinear optimization problems at each control step.

2.1 Model Predictive Control (MPC)

Model Predictive Control (MPC) is an optimal control strategy in which the trajectory for a

dynamical system is, at each control step, optimized over a finite time horizon. As the duration

of the control step is generally shorter than the time horizon, very little of each trajectory is

used. Instead a new optimal trajectory is continuously computed, adjusting to changes caused

by the robot’s interactions with its environment (e.g., wind blowing a quadrotor off course,

unmodeled friction in a robot’s joints). This process is diagrammed in Figure 2.1 where the

execution of the first step of an optimized trajectory results in a deviation from the simulated

plan, and the computation of a new optimal trajectory that takes this deviation into account.

MPC has historically seen success in both the aerospace and chemical industries [17].

4

Figure 2.1: A graphical depiction of MPC. On the left, an initial optimal trajectory shown in blue is
computed from a start state, xs, shown in green to a goal state, xg, shown in yellow. In the center, the
first step in the trajectory is executed on the real system resulting in a new start state that deviates
slightly from the second state in the initial optimal trajectory. On the right, a new optimal trajectory
shown in orange is constructed from the new start state to the goal state and the process repeats itself.

Nonlinear Model Predictive Control refers to the case where MPC is applied to a nonlinear

dynamical system. In robotics, whole-body, nonlinear MPC refers to the case where the

robot’s full nonlinear dynamics are used. This is in contrast to approaches that approximate

the robot as a simpler system. For example, many successful approaches to bipedal and

quadrupedal walking approximate the robot as a single rigid body by leveraging the simple

linear inverted pendulum (SLIP) model, the zero-moment point, the hybrid-zero dynamics

model, the centroidal dynamics model, or by simply ignoring leg dynamics [18; 19; 20; 21; 22;

23; 24; 25; 26].

2.2 Trajectory Optimization

Trajectory optimization [27], also known as numerical optimal control, is the traditional

method used to solve the underlying nonlinear optimization problem at each control step of

whole-body, nonlinear MPC. These problems optimize the robot’s trajectory by minimizing an

additive cost function,

J(X,U) = ℓf (xN) +

N−1∑
k=0

ℓ(xk, uk), (2.1)

subject to (nonlinear) constraints

c(X,U) ≥ 0, (2.2)

5

where xk ∈ Rn are the robot’s states and uk ∈ Rm are the robot’s control inputs along a

discrete time trajectory with N knot points. Trajectories are commonly discretized into tens

to hundreds of knot points to balance physical realism with computational complexity.

Common (nonlinear) state and input constraints include: joint and torque limits, obstacle

avoidance constraints, contact constraints, and dynamics constraints which often leverage a

discrete time integrator over a timestep h,

xk+1 = f(xk, uk, h). (2.3)

A choice must be made as to the type of integrator to use which trades off integration

accuracy and computational complexity. Common integrators, in order of increasing accuracy

and complexity, include forward Euler, semi-implicit Euler, Midpoint, and Runge–Kutta

methods [28]. Recent work has also explored the use of implicit and variations integrators

which suggest improved accuracy for similar computational cost [29; 30; 31; 32].

In this dissertation we focus on the trajectory optimization problem with only dynamics

constraints and an initial state constraint, that is,

min
X,U

ℓf (xN) +
N−1∑
k=0

ℓ(xk, uk)

s.t. xk+1 = f(xk, uk, h) ∀k ∈ [0, N)

x0 = xs

(2.4)

However, we note that, and detail in Sections 2.3 and 2.4, that algorithms aimed at solving

this class of problems can be modified to support additional constraints.

The two most common ways to solve trajectory optimization problem are through direct

methods and shooting methods. Direct methods solve the trajectory optimization problem

by parameterizing both the state and input trajectories, X,U , and forming a large and

sparse nonlinear program which can be solved using an off-the-shelf solver package [33]. In

contrast, shooting methods, such as the Differential Dynamic Programming (DDP) algorithm,

6

parameterize only the input trajectory, U , and use Bellman’s optimality principle to iteratively

solve a sequence of much smaller optimization problems in order to compute the optimal input

(and corresponding state) trajectories [34; 35].

Importantly, both of these approaches can be reduced to an iterative three step process:

1. Form an approximation (often through a Taylor expansion) of the cost and constraint

functions around the nominal trajectory (X,U).

2. Compute an update that can be applied to the controls (and the states in the case of a

direct method).

3. Apply the update, while ensuring descent on the original nonlinear problem, often

through the use of a merit-function and a line-search or trust-region.

In both of these cases, Step 1 is dominated by the computation of dynamics (gradients), which

consume 30% to 90% of the total computational time of whole-body, nonlinear MPC [1; 2; 3; 4].

Chapter 5 explores ways to accelerate these computations in detail.

Chapters 4 and 6 explore Steps 2 and 3 in more detail through the lens of both shooting and

direct methods, as there are a variety of ways to both compute and apply the update, which

admit different amounts of natural parallelism. We also introduce both algorithm types in

more detail in the remainder of this chapter.

2.3 Differential Dynamic Programming (DDP)

Shooting methods, like the Differential Dynamic Programming (DDP) algorithm, parameterize

only the input trajectory, U , and iteratively solve a sequence of much smaller optimization

problems in order to compute the optimal input (and corresponding state) trajectories [34; 35].

This iterative process is based on Bellman’s principle of optimality [36], which defines the

7

optimal cost-to-go, Vk(x), by the recurrence relation:

VN (x) = ℓf (xN)

Vk(x) = min
u

ℓ(x, u) + Vk+1(f(x, u)).
(2.5)

When interpreted as an update procedure, this relationship leads to classical dynamic pro-

gramming [36]. However, the curse of dimensionality prevents direct application of dynamic

programming to most systems of interest to the robotics community. In addition, while

VN (x) = ℓf (xN), and often has a simple analytical form, Vk(x) will typically have complex

geometry that is difficult to represent due to the nonlinearity of the dynamics (2.3).

DDP leverages a second-order Taylor expansion of a local approximations to the cost-to-go

along a trajectory under perturbations, δx, δu to avoid the curse of dimensionality:

Q(δx, δu) ≈ 1

2

1

δx

δu

T

0 QT
x QT

u

Qx Qxx Qxu

Qu QT
xu Quu

1

δx

δu

 . (2.6)

Where the block matrices are computed as:1

Qxx = ℓxx + fT
x V

′
xxfx + V ′

x · fxx Qx = ℓx + fT
x V

′
x.

Quu = ℓuu + fT
u V

′
xxfu + V ′

x · fuu Qu = ℓu + fT
u V

′
x.

Qxu = ℓxu + fT
x V

′
xxfu + V ′

x · fxu.

(2.7)

Minimizing equation (2.6) with respect to δu results in the following control correction:

δu = −Q−1
uu (Quxδx+Qu) ≡ Kδx+ κ, (2.8)

which consists of an affine term κ and a linear feedback term Kδx. These terms can be

1Following the notation used elsewhere [37], the explicit time indices are dropped and a prime is used to
indicate the next timestep. Derivatives with respect to x and u are denoted with subscripts. The rightmost
terms in the equations for Qxx, Quu, and Qxu involve second derivatives of the dynamics, which are rank-three
tensors and are often omitted, resulting in the iLQR algorithm [38].

8

substituted back into equation (2.6) to obtain an updated quadratic model of V :

Vx = Qx −Qxuκ

Vxx = Qxx −QxuK.

(2.9)

DDP, like other variants of Newton’s method, can achieve quadratic convergence near a local

optimum [35; 39]. However, a line search parameter, α, must be added to the forward pass to

ensure a satisfactory decrease in cost, and a regularization must be applied to ensure that Quu

in equation (2.8) is invertible [40].

As such, DDP’s three step iterative process is:

1. Form a quadratic approximation of the cost function and a linear approximation of the

constraints around a nominal trajectory (X,U).

2. Compute the control corrections K and κ along the whole trajectory by performing a

backward pass starting at the final state, xN , by setting VN = ℓf (xN), and iteratively

applying Equations 2.6-2.9.

3. Recover the new state trajectory using the update controls through a forward nonlinear

simulation pass starting at the initial state x0, while ensuring descent on the nonlinear

problem through the use of a line-search. This computes state k + 1 for iteration i+ 1

as follows: xi+1
k+1 = f(xi+1

k , uik +Ki+1
k

(
xi+1
k − xik

)
+ ακi+1

k , h).

For shooting methods, while constraints beyond the standard dynamics constraints cannot

be included in the standard formulation, recent work has shown that they can be included

by transforming the backward pass into a series of QPs [41; 42; 43; 44; 45; 46] or through

augmented Lagrangian approaches that modify the cost function [47; 48].

2.4 Direct Trajectory Optimization

Direct methods solve the trajectory optimization problem by forming a large and sparse

nonlinear program which can be solved using a variety of off-the-shelf solver packages. Popular

9

packages include the Sequential Quadratic Programming (SQP) solver SNOPT [49], and the

Interior Point solver IPOPT [50].

While there are a variety of algorithmic approaches used to solve the nonlinear programs

resulting from Equation 2.4, most methods can be reduced to the following three step iterative

process: [33; 50; 49]:

1. Form a quadratic approximation of the cost function and a linear approximation of the

constraints around a nominal trajectory (X,U), resulting in a quadratic program (QP)

where Z = [X,U], G = ∇2J , g = ∇J , and C = ∇c.

2. Compute the update δZ∗ by solving the associated Karush–Kuhn–Tucker (KKT) system:G CT

C 0

−δZ

λ

 =

g
c

 (2.10)

3. Apply the update step, δX∗, δU∗, while ensuring descent on the nonlinear problem

through the use of a merit-function and line-search or trust-region.

Therefore, while DDP style methods rely on an iterative forward and backward pass to compute

and apply the update, direct methods instead solve the KKT system (Equation 2.10) directly

and then apply the update to all of the states and controls at once. As such, these approaches

expose more natural parallelism. Direct methods are also more flexible as they can more easily

support the inclusion of additional constraints. While there are many different formulations of

direct methods, they tend to differ in two main ways: the first is in how they handle additional

inequality constraints,2 and the second is in how they solve the associated KKT system.

2While we focus on a subset of equality constrained trajectory optimization problems in this dissertation (see
Equation 2.4), we include a quick summary of common approaches used to solve trajectory optimization problems
with inequality constraints here. While these approaches do require algorithmic modifications, they still reduce
to algorithms with similar computational patterns as the algorithms discussed in this dissertation. Sequential
Quadratic Programming (SQP) methods solve a sequence of QPs based on estimates of the active set of
constraints. That is, the set of equality constraints and all inequality constraints upon which the solution resides
on the boundary of the inequality, in other words, where c(Z) = 0. As the size of the active set is exponential
in the number of inequality constraints, these formulations rely on good estimates of the active set to converge
quickly. Interior Point methods instead augment inequality constraints with slack variables, s, such that the

10

Importantly, regardless of the ways in which both equality and inequality constraints are

handled, all of these methods rely on inner solves of KKT systems. These linear systems can

be solved in two main ways. The first is through direct factorization into matrices which

make solving the resulting system easier. For example, the LLT Cholesky Factorization or the

LDLT factorization result in a system with only triangular (and diagonal) matrices which can

be efficiently solved through serial back substitution. The second method is through iterative

fixed point methods, the most popular of which is the Conjugate Gradient Krylov subspace

method. These methods start with a guess of the solution and rely on large (and often sparse)

matrix-vector products and vector reductions to repetitively improve the guess, converging

to the final solution. For more information on these different methods we suggest reading

Chapter 5 of [33] and Chapter 4 of [52].

2.4.1 Merit Functions

As states and controls are both updated simultaneously in direct methods, a merit function is

needed to ensure that each step provides a combined improvement to the nonlinear cost and

constraints functions.

A common choice for a merit function is the L1 merit function [33],

M(Z;µ) = J(Z) + µ|c(Z)|. (2.11)

When combined with an Armijo line search condition, an update step αδX∗, αδU∗ will be

accepted if it satisfies the following, where ω1, and ω2 are hyperparameters for the minimum

and maximum allowable deviations from the expected reduction [33; 40]:

ω1 ≤
M(Z + αδZ;µ)−M(Z;µ)

α (gT δZ − µ|c|)
≤ ω2. (2.12)

constraints become c(Z)− s = 0 and then place log barrier penalties into the cost functions to penalize for large
slack values. Finally, as mentioned previously, augmented Lagrangian methods penalize all of the constraints
in the cost function by optimizing the augmented Lagrangian LA(Z, µ, λ) = J(Z) + λT c(Z) + c(Z)T Iµc(Z)
where Iµ ensures that only the active set is penalized quadratically [51]. Many commercial software packages
use a mixture of these methods to leverage the respective strengths. For more information on these different
methods we suggest reading Chapters 15-19 of [33].

11

2.4.2 Schur Complement Direct Trajectory Optimization

One way to solve the KKT system in Equation 2.10 is through the use of the symmetric

positive semi-definite Schur Complement, S, which can be formed, and then used to solve for

the optimal Lagrange multipliers, λ∗, as follows:

S = −CG−1CT

γ = c− CG−1g

Sλ∗ = γ

(2.13)

λ∗ can then be used to compute the optimal state and control update, δZ∗:

δZ∗ = G−1
(
g − CTλ∗) (2.14)

In most trajectory optimization scenarios, S and γ are relatively easy to form, and Equation 2.14

is relatively easy to solve, as the cost function is separable across timesteps by construction,

resulting in a block-diagonal G matrix. As such, the dominant computational step in this

approach is solving Sλ∗ = γ. As mentioned previously this can be solved either through efficient

serial direct factorization approaches (e.g., Cholesky factorization) or through efficient iterative

methods (e.g., Conjugate Gradient). As we focus on parallel algorithms in this dissertation,

we focus on iterative methods as they traditionally admit more parallel computations.

2.4.3 Krylov Subspace Methods

Krylov subspace methods are iterative methods that can be used to efficiently compute the

solution of large linear systems. That is, they solve the problem Sλ∗ = γ for a given S and

γ by iterative refining an estimate for λ up to some tolerance ϵ. The most popular of these

methods is the Conjugate Gradient (CG) method, which is applicable to systems where S is

positive semi-definite.

The convergence rate of CG is directly related to the spread of the Eigenvalues of S ∈ Rn×n,

converging faster and avoiding round-off and overflow errors caused by iterative floating point

12

math when they are clustered and moderate in magnitude. CG is also guaranteed to converge

in at most n steps if the spectral radius of S (the maximum absolute magnitude of the

eigenvalues of S) is less than one [33; 53].

To improve the performance of these algorithms a preconditioning matrix Φ ≈ S is often

applied to instead solve the equivalent problem Φ−1Sλ∗ = Φ−1γ. A good preconditioner is one

that is easy to invert and reduces the spread and magnitude of the eigenvalues of Φ−1S.

Finally, we note that the matrix Φ−1S does not have to be explicitly formed. Instead the

Preconditioned CG (PCG) algorithm leverages matrix-vector products with S and Φ−1, as

well as vector reductions, both parallel friendly operations (see Algorithm 1).

Algorithm 1: PCG(S, γ, λ,Φ, ϵ) → λ∗

1: r = γ − Sλ

2: r̃, p = Φ−1r

3: η = rT r̃

4: for iter i = 1 : max_iter do

5: α = η/(pTSp)

6: r = r − αSp

7: λ = λ+ αp

8: r̃ = Φ−1r

9: η′ = rT r̃

10: if η′ < ϵ then

11: return λ

12: β = η′/η

13: p = r̃ + βp

14: η = η′

15: return λ

13

2.4.4 Parallel Preconditioners

There are many different preconditioners that are optimized for computation on vector or

parallel processors. The most popular of these is the Jacobi or Block-Jacobi preconditioner.

This sets:

Φ = diag(S) or Φ = block-diag(S). (2.15)

Previous GPU based Krylov solvers mainly leveraged these preconditioners [54; 55]. For block

banded matrices, alternating and overlapping block preconditioners have also been used in

previous work. These methods compute Φ−1 as a sum of the inverse of block-diagonal matrices

that compose S [56; 57]. Finally, Polynomial splitting preconditioners [57] follow the pattern

S = Ψ−R and compute a preconditioner where:

S−1 ≈ Φ−1 = (I +Ψ−1R+ (Ψ−1R)2 . . .)Ψ−1. (2.16)

Increasing the degree of the polynomial computes a better approximation of S and improves

the convergence rate of the resulting PCG algorithm. However, this requires more computation

to compute the preconditioner and also often creates a preconditioner with a larger bandwidth,

requiring more memory. For block-banded matrices, like the Schur complement matrix for

most trajectory optimization problems, as the values in the true inverse decay exponentially

as one moves away from the diagonal [58], this creates a tradeoff between the accuracy and

both the memory and computational complexity of the preconditioner.

14

Chapter 3

Computer Hardware Background

In order for computer programs to run efficiently they need to be designed to take advantage

of the strengths and minimize the weaknesses of the computer hardware on which they are run.

This process is refereed to as Hardware-Software Co-Design [15]. In this chapter we show why

high performance parallel architectures are needed today and then provide an introduction to

multi-core CPUs, GPUs, and co-design.

3.1 The Need for Parallelism

The impending end of Moore’s Law and the end of Dennard Scaling have led to a utilization

wall that limits the performance a single chip can deliver [5; 6]. As shown in Figure 3.1, since

about 2005, CPU clock speed has flat-lined and single threaded performance has started to

stall. In response, hardware vendors have drastically increased the number of CPU cores

on each processor. However, for many cutting edge applications, like machine learning, this

has not been enough, and computer scientists have had to look beyond the CPU to exploit

large-scale parallelism available on alternative computing platforms such as GPUs [7].

15

Figure 3.1: 48 years of processor trends plotted on a log scale. The data shows how CPU clock speed
peaked in 2005 and has remained relatively constant since. At the same time while single threaded
performance, indicated by SpecINT benchmark scores, has increased since 2005, the rate of increase
has slowed dramatically. In response, hardware vendors have drastically increased the number of CPU
cores on each processor. Original data up to the year 2010 collected by M. Horowitz, F. Labonet, O.
Shacham, K. Olukotun, L. Hammond, and C. Batten. Data for 2010-2019 collected by K. Rupp. All
data available at https://github.com/karlrupp/microprocessor-trend-data

3.2 Multi-Core CPU

A multi-core CPU can be roughly viewed as a handful of modern CPUs that are designed

to work together, often on different tasks, leveraging the multiple-instruction-multiple-data

(MIMD) computing model. A rich ecosystem of supporting software tools makes CPUs

easy to program, and they are highly flexible with deep and varied instruction pipelines

with sophisticated control logic and large caches (See Figure 3.2). This enables them to

automatically amortize the delays cause by memory accesses for code that leverages regular

memory access patterns and uses relatively small working sets of data that fit into the CPU

caches. This is important as cache memory is often orders of magnitude faster than DRAM.

CPUs are also fantastic at computing serial code due to their high clock rates.

Multi-core CPUs enable CPU threads to run on different logical processors in parallel. Each

CPU thread runs with its own set of registers and stack memory, and context switches between

threads, and the allocation of threads to logical hardware cores, are scheduled asynchronously

16

https://www.spec.org/benchmarks.html
https://github.com/karlrupp/microprocessor-trend-data

by the operating system. Due to the significant overheads of thread creation, threadpools have

become popular as they amortise this cost through a create once, use many paradigm. For more

information on CPU threading we suggest reading C++ Concurrency in Action [59].

Figure 3.2: High level architecture of a multi-core CPU. Each core has its own local L1 cache, control
logic, and arithmetic and logic units, while all cores share access to a larger L2 cache and DRAM.

3.3 Graphics Processing Unit (GPU)

In contrast to a multi-core CPU, a GPU is a much larger set of very simple processors, optimized

for parallel computations of the same task, leveraging the single-instruction-multiple-data

(SIMD) computing model. As such, each GPU processor has many more arithmetic logic units

(ALUs), but reduced control logic and a smaller cache memory (see Figure 3.3).

For maximal performance, the GPU requires groups of threads within each thread block

to compute the same operation on memory accessed via regular patterns. Like with the

CPU, this enables the GPU to better leverage memory locality and amortize the order of

magnitude slowdowns of accessing DRAM over cache memory. GPUs are therefore best at

computing highly regular and separable computations over large working sets of data (e.g.,

large matrix-matrix multiplication). GPUs also typically run at about half the clock rate of

CPUs, which further hinders their performance on purely sequential code.

17

Figure 3.3: High level architecture comparing a multi-core CPU (left) and GPU (right) processor.
Importantly, a multi-core CPU has increased cache size and control logic, while a GPU has many more
arithmetic and logic units (ALUs).

When leveraging a GPU as an accelerator, for each independent computation, data must be

transferred from the CPU to the GPU and then back again after computations are completed.

This I/O communication overhead can be amortized by performing large amounts of arithmetic

operations on the GPU per each round trip memory transfer. From a design perspective,

GPUs are best suited for applications which require high throughput of a compute workload

which has high computational intensity, and exhibits high degrees of natural parallelism.

Our work uses NVIDIA’s CUDA [60] extensions to C++. CUDA is built around host (CPU)

and device (GPU) memory and code. Special functions called kernels are launched from

the host and then call device functions using parallel blocks of threads on the GPU.1 On

most modern GPUs, these threads run in warps of 32 threads. For maximal performance

there should be no branching between threads in a single warp and all global memory (RAM)

1These functions are typically launched through the use of a special syntax (myFunc«<a,b,c,d»>(args))
where a specifies how many blocks to launch each containing b threads, c represents the amount of dynamically
allocated shared (cache) memory, and d represents which stream of kernels this particular kernel launch should
run in. Streams run in parallel of each other and kernels within each stream run sequentially.

18

accessed by each warp should be done in a coalesced (sequential) manner.2 Each block’s

threads also access a small shared cache, which is split between a standard L1 cache and

shared memory, which is manually managed by the programmer. Using shared memory can be

as fast as using registers if done properly, and as such, historically, high performance CUDA

code was dependent on smart use of the limited shared memory resources. To enable this

resource sharing, all threads within a block are also guaranteed to run on the same processor,

but the ordering of the blocks is not guaranteed. There are also a number of different ways to

synchronize (groups of) threads in a block, in a stream, or on the entire device. Finally, it is

important to note that kernel launches suffer very large overheads and so combining code into

fewer kernels will improve overall performance. This process is generally referred to as kernel

fusion [61]. For more information on the CUDA programming model we suggest reading the

NVIDIA CUDA programming guide [60].

3.4 Hardware-Software Co-Design

Hardware-Software Co-Design is the process of collaboratively optimizing algorithms and

computer hardware to ensure that target algorithms can take advantage of the strengths

and minimize the weaknesses of the computer hardware on which they are run [15]. As

diagrammed in Figure 3.4, co-design requires computer scientists to propagate up the hardware

features and down the algorithmic features to redesign and refactor algorithms. This could

mean simply reordering computations to expose different computational or memory access

patterns. This could also mean redesigning algorithms or selecting alternate algorithms that

better expose hardware friendly computational structures. Finally, in some cases this could

even mean designing custom computer hardware to take advantage of the structured sparsity

in key algorithms. During this process, if algorithms can be divided into known standard

computational patterns, than existing optimized libraries can be used for efficient computations

(e.g., the Berkeley Dwarfs [62; 63]). However, as we will see throughout this dissertation,

2While the penalty for out of order memory accesses has been greatly reduced on the newest GPUs due to
sophisticated engineering by GPU manufacturers, it is still best practice to coalesce memory accesses.

19

there are often ways to develop further optimized and customized implementations that better

target the exact sparsity and parallelism patterns found in robotics problems. As such, we

endeavor to release our implementations as open-source libraries, and keep them updated to

account for changes in the underlying computer hardware, in order to enable future robotics

researchers to build on top of our optimized kernels, accelerating both robotics computations

and application development timelines.

Figure 3.4: Co-design requires computer scientists to propagate up the hardware features and down the
algorithmic features to redesign and refactor algorithms in order to better map algorithms to hardware.
Here we provide an incomplete list of some relevant algorithmic and hardware features. We explore
these kinds of features in detail in the remainder of this dissertation.

20

Chapter 4

MPC with GPU Accelerated DDP

This chapter aims to add to our understanding of the benefits and limitations of instruction-

level and algorithm-level parallelization for whole-body, nonlinear MPC for a particular family

of trajectory optimization algorithms based on Differential Dynamic Programming (DDP) [35].

We focus on DDP and its variants, particularly the iterative Linear Quadratic Regulator

(iLQR) [38], as they have recently received increased attention due to growing evidence

that online planning for model predictive control (MPC) is possible for high-dimensional

robots [2; 4; 37; 64; 65; 66; 67]. Following the publication of the work upon which this chapter

is based [3; 68], additional publications further reinforced the real-time applicability of these

kinds of algorithms [69; 70; 71].

In this chapter, we describe our parallel implementation strategy on a modern NVIDIA GPU

and present results demonstrating its performance compared to an equivalent multi-threaded

CPU implementation using benchmark trajectory optimization tasks for a quadrotor and 7-DoF

manipulator. We then deploy our implementation for whole-body, nonlinear MPC on a physical

robot arm to demonstrate the feasibility of this approach in the presence of model discrepancies

and communication delays between the robot and GPU. Our results suggest that GPU-based

solvers can offer faster convergence than equivalent parallelized CPU implementations and

21

that in some cases these speedups lead to better real-world MPC performance. However,

performance tradeoffs exist between convergence behavior and time per iteration as the degree

of algorithm-level parallelism increases, limiting the possible improvements from parallelism

for DDP based algorithms and implementations.

4.1 Related Work

Prior work on parallel nonlinear optimization has broadly focused on exploiting the natural

separability of operations performed by the algorithm to achieve instruction-level parallelism.

For example, if a series of gradients needs to be computed for a list of static variables, that

operation can be shifted from a serial loop over them to a parallel computation across them.

Alternatively, if block diagonal matrices must be inverted many times by the solver, each of

these instructions can be broken down into a parallel solve of several smaller linear systems.

These parallelizations do not change the theoretical properties of the algorithm and therefore

can and should be used whenever possible. This research has led to a variety of optimized QP

solvers targeting CPUs [72; 73], GPUs [74; 75], and FGPAs [76; 77]. These approaches have

also been used to specifically improve the performance of a subclass of QPs that frequently arise

in trajectory optimization problems on multi-threaded CPUs [78; 79; 80; 81] and GPUs [82; 83].

Additionally, Antony and Grant [84] used GPUs to exploit the inherent parallelism in the “next

iteration setup” step of DDP. Finally, there have been a series of recent works further exploiting

this parallelism in dynamics gradient evaluations on the CPU, GPU, and FPGA [85; 86; 87],

as well as through SIMD instructions on the CPU [88].

In contrast to instruction-level parallelism, algorithm-level parallelism changes the underlying

algorithm to create more opportunities for simultaneous execution of instructions. In the field

of trajectory optimization, this approach was first explored by Bock and Plitt [89] and then

Betts and Huffman [90], and has inspired a variety of “multiple shooting” methods [91; 92].

Recently, this approach has been used to parallelize both an SQP algorithm [93] and the

forward [94; 95] and backward passes [64] of the iLQR algorithm. Experimental results from

22

using these parallel iLQR variants on multi-core CPUs achieve state-of-the-art results for

real-time, whole-body, nonlinear MPC.

Our work aims to add to this literature by systematically comparing the performance of

an parallel implementation of iLQR on a modern multi-core CPU and GPU to (1) better

understand the performance implications of various implementation decisions that must be

made on parallel architectures and (2) to evaluate the benefits and trade-offs of higher degrees

of parallelization (GPU) versus a higher clock rate (CPU).

4.2 Parallelizing DDP

In this section we detail both the algorithm-level and instruction-level parallelism we imple-

mented, for both the CPU and GPU, and present our final Parallel DDP (PDDP) algorithm.

For additional detail on the algorithm and our implementation strategy we suggest reading

Chapters 4 and 5 of [96].

4.2.1 Instruction-Level Parallelization

Since the standard DDP cost function (2.1) is additive and depends on each state and control

independently, it can be computed in parallel following forward integration and summed in

log(N) operations using a parallel reduction operator.

In addition, instead of computing the line search during the forward pass by sequentially

reducing α, we can compute all forward simulations for a set of possible α values in parallel.

Furthermore, if all simulations are computed in parallel, then the algorithm could select the

“best” trajectory across all α values, rather than the first value that results in an improvement.

We employ the line search criteria proposed by Tassa [40] and accept an iterate if the ratio of

the expected to actual reduction,

z =
(
J − J̃

)
/δV ∗(α) where δV ∗(α) = −ακTHu +

α2

2
κTHuuκ, (4.1)

23

falls in the range

0 < c1 < z < c2 <∞. (4.2)

Finally, since the dynamics are defined independently on each state and control pair, the

Taylor expansions of the dynamics and cost (the “next iteration setup” step) can occur in

parallel following the forward pass. As this is one of the more expensive steps, this is usually

parallelized in CPU implementations of DDP currently being used for online robotic motion

planning – though the number of knot points often exceeds the number of CPU processor

cores.

4.2.2 Algorithm-Level Parallelization

Backward Pass

We break the N knot points into Mb equally spaced parallel blocks of size Nb = N/Mb. We

compute the CTG within each block by passing information serially backwards in time, as is

done in standard DDP. After each iteration we pass the information from the beginning of

one block to the end of the adjacent block, ensuring that CTG information is at worst case

(Mb − 1) iterations stale between the first and last block as shown in Figure 4.1.

Farshidian et al. [64] note that this approach may fail if the trajectory in the next iterate is

far enough away from the previous iterate as the stale CTG approximations are defined in

relative coordinates and are only valid locally. Therefore, they propose a linear coordinate

Figure 4.1: Graphical representation of the backward pass algorithm-level parallelizations showing
information flowing within each parallel block during each iteration and moving across adjacent block
boundaries between iterations.

24

transformation of the quadratic CTG approximation at iterate i to re-center it:

V i+1
xx = V i

xx, V i+1
x = V i

x + V i
xx(x

i+1 − xi). (4.3)

While this process will still usually converge [97; 98], in practice, some forward passes will fail

to find a solution because either the CTG information was “too stale,” or the new trajectory

moved too far from the previous trajectory, rendering the controls at later knot points sub-

optimal. Therefore, on the next pass we use the failed iterate’s CTG approximation, as it is a

less stale estimate, and again follow Tassa [40] and add a state regularization term ρIn to V ′
xx

in the computation of Quu and Qxu to stay closer to the last successful trajectory:

Quu = ℓuu + fT
u

(
V ′
xx + ρIn

)
fu + V ′

x · fuu

Qxu = ℓxu + fT
x

(
V ′
xx + ρIn

)
fu + V ′

x · fxu.
(4.4)

Forward Pass

Giftthaler et al. [94] introduced Gauss-Newton Multiple Shooting, which adapts iLQR for

multiple shooting through a fast consensus sweep with linearized dynamics followed by a

multiple shooting forward simulation from Mf equally spaced states of Nf = N/Mf knot

points as shown in Figure 4.2.

This parallel simulation leads to defects d between the edges of each block and changes the

one step dynamics to xk+1 = f(xk, uk)− dk. Incorporating this change into Equations 2.5-2.7

Figure 4.2: Graphical representation of the forward pass algorithm-level parallelizations showing
information flowing within each block during each forward simulation and along the entire trajectory
through each forward sweep.

25

results in a modified version of Q (δx, δu):

Qx = Qx + fT
x V

′
xxd Qu = Qu + fT

u V
′
xxd. (4.5)

We also update our line search criteria to include the following:

0 < max
k
||dk||1 < c3 <∞, (4.6)

excluding any trajectories that have large defects which represent an artificial mathematical

reduction in cost that is infeasible in practice.

Finally, in order to update the start states of each block, a serial consensus sweep is performed

by integrating the state trajectory using the previously computed linearized dynamics (A = fx,

B = fu) and feedback controls (K, κ), updating state k + 1 for iterate i + 1 (using a line

search parameter α):

xi+1
k+1 = xik+1 +

(
Ai

k +Bi
kK

i
k

) (
xi+1
k − xik

)
+ αBi

kκ
i
k + dik. (4.7)

Thus, the forward pass now becomes the serial consensus sweep followed by a parallel forward

simulation on each of the Mf blocks.

4.2.3 The Parallel DDP Algorithm

Parallel DDP, shown in Algorithm 2 combines the instruction-level parallelizations, forward

sweep, Mf multiple shooting intervals, and Mb backward pass blocks into a single algorithm

with parameterizable levels of parallelism.

4.2.4 Implementation Details

As mentioned in Chapter 2, we used the NVIDIA CUDA extensions to C++ for our GPU

implementation. We minimized memory bandwidth delays by doing most computations on a

handful of fused GPU kernels, limiting CPU operations to high level serial control flow for

kernel launches. We also made heavy use of streams and asynchronous memory transfers

to increase throughput wherever possible. For example, by simultaneously computing the

26

Algorithm 2: Parallel DDP

1: Initialize the algorithm and load in initial trajectories

2: while cost not converged do

3: for all Mb blocks b do in parallel

4: for k = bNb
: b0 do

5: dk, (2.7), (4.4), (4.5) → Qk

6: if Qk
uu is invertible then

7: (2.8) → Kk, κk

8: (2.9) → Vk and derivatives

9: else

10: Increase ρ go to line 3

11: for all α[i] do in parallel

12: x̃0[i] = x0

13: if Mf > 1 then

14: for k = 0 : N − 1 do

15: x̃k[i], (4.7) → x̃k+1[i]

16: for all Mf blocks b do in parallel

17: for k = b0 : bNf
− 1 do

18: ũk[i] = uk + α[i]κk +Kk(x̃k[i]− xk)

19: x̃k+1[i] = f(x̃k[i], ũk[i])

20: d̃k[i] = 0

21: k = bNf

22: if k < N then

23: ũk[i] = uk + α[i]κk +Kk(x̃k[i]− xk)

24: d̃k[i] = xk+1 − f(x̃k[i], ũk[i])

25: X̃[i], Ũ [i], (2.1), (4.1) → J̃ [i], z̃[i]

26: i∗ ← argmini J̃ [i] s.t. z̃[i], d̃[i] satisfy (4.2), (4.6)

27: if i∗ ̸= ∅ then

28: X,U, d← X̃[i∗], Ũ [i∗], d̃[i∗]

29: else

30: Increase ρ go to line 3

31: Taylor approximate the cost at X,U

32: Taylor approximate the dynamics at X,U

Backward
Pass

Consensus
Sweep

Forward
Simulation

Forward
Pass

Next
Iteration
Setup

27

Taylor approximations of the dynamics and cost in separate streams, the throughput of the

next iteration setup step was much closer to the maximum of the running times for those

calculations than the sum.

We also found that the general purpose GPU matrix math libraries (e.g., cuBLAS) were

optimized for very large matrix operations, while DDP algorithms require many sets of serial

small matrix operations. We implemented simpler custom fused kernels which provide a large

speedup by keeping the data in shared memory throughout the computations. We further

optimized our code by precomputing serial terms during parallel operations. For example,

during the backward pass, A,B,K, and κ were loaded into shared memory, so computing

A+BK and Bκ only added a small overhead to the paralellizable backward pass, while greatly

reducing the time for the serial consensus sweep.

Our multi-threaded CPU implementation leveraged the standard C++ thread library and

reused the same baseline code to leverage the optimizations made during the GPU implemen-

tation and to provide an equivalent implementation for comparison. However, for optimal

performance, we had to introduce serial loops within threads to limit the number of threads

to a small multiple of the number of CPU cores.

As no sufficient GPU rigid body dynamics library existed at the time of publication (in-

spiring Chapter 5), we implemented a custom GPU optimized forward dynamics kernel for

the manipulator based on the Joint Space Inertia Inversion Algorithm, the fastest parallel

forward dynamics algorithm for open kinematic chain robots with a small number of rigid

bodies [99]. For better direct comparisons, we used a looped version of that code for the CPU

implementation.1 Finally, following the state-of-the-art, we implemented the iLQR variant of

DDP for our experiments.

1We note that while the Joint Space Inertia Inversion Algorithm is not the fastest serial forward dynamics
algorithm, the difference is minimal for a 7-Dof manipulator.

28

4.3 Exploring the Benefits and Limitations of Parallelism

In this section we explore the benefits and limitations of parallelism across different problems,

computing architectures, and levels of parallelism. These experiments suggest that practical

performance improvements can be obtained through large-scale parallelization and GPU

implementations, but that the tradeoffs between the degree of parallelism and convergence

speed are strongly dependent on system dynamics and problem specification.

We ran these experiments on a laptop with a 2.8GHz quad-core Intel Core i7-7700HQ CPU, a

NVIDIA GeForce GTX 1060 GPU, and 16GB of RAM. In these experiments we initialized the

algorithm with a gravity compensating input. Both the GPU and CPU implementations used

the same scheme for updating ρ and the same set of options for α. We report convergence

results (cost as a function of time and iteration) and the time per iteration. Total cost

reduction as a function of time is a particularly useful metric when deploying algorithms in

MPC scenarios where there is typically a fixed control time budget. To ensure our results were

representative for each experiment, we ran 100 trials with noise distributed N (0, σ2) applied

to the velocities of the initial trajectory. Our solver implementations and these examples can

be found at https://github.com/plancherb1/parallel-DDP.

4.3.1 Quadrotor

We first considered a quadrotor system with 4 inputs corresponding to the thrust of each rotor

and 12 states corresponding to the position and Euler angles, along with their time derivatives.

We solved a simple flight task from a stable hover 0.5 m above the origin to a stable hover at

the same height and at 7m in the x and 10m in the y direction. We used a quadratic cost

function of the form:

J =
1

2
(xN − xg)

TQN (xN − xg) +

N−1∑
k=0

1

2
(xk − xg)

TQ(xk − xg) +
1

2
uTkRuk, (4.8)

setting Q = blkdiag(0.01× I3x3, 0.001× I3x3, 2.0× I6x6), R = 5.0× I4x4, QN = 1000× I12x12.

We solved over a 4 second trajectory with N = 128, MF = MB = M = 1, 2, 4, 8, 16, 32, 64, a

29

https://github.com/plancherb1/parallel-DDP

3rd-order Runge-Kutta integrator, and σ = 0.001.

Figure 4.3 reveals that the delayed flow of information due to the algorithm-level parallelizations

(stale CTG information, fixed starting state of each simulation block) generally leads to

smaller steps and therefore slower cost reduction per iteration. For example, for the CPU

implementation, the median line search depth for M = 1 was between 0 and 1, while for M = 4

it was 5. It also shows that the GPUs ability to run a fully parallel line search, as compared

to the CPUs partially parallel approach (due to limited number of hardware cores), allows

the GPU to select a better “best line search” option and descend faster while avoiding local

minima. For example, for the GPU implementation, the median line search depth for M = 1

was also between 0 and 1, while for M = 4 it was only 3. These trends were also mirrored in

the success rate of the algorithm. While 0% of CPU and GPU runs failed for M = 1, 2, 4, and

on the GPU only 5% failed for M ≥ 8, on the CPU over 30% failed for M ≥ 8.

The median time per iteration for each of the parallelization options for both implementations

is shown in Figure 4.4. Our observed per-iteration times of under 3 ms for all GPU and CPU

Figure 4.3: Median cost vs iteration for the quadrotor experiment. We find that, for both the CPU
and GPU, as the amount of algorithm-level parallelism increases, the convergence rate decreases.

30

cases are comparable to state-of-the-art reported rates of 5-25 ms [2] on a similar UAV system.

These results also match our expectations that the higher clock rate would allow the CPU

to compute the serial consensus sweep faster while the GPU is able to leverage its increased

number of cores to compute the parallel next iteration setup step faster.

Figure 4.4: Median time per iteration for the quadrotor experiment. We find that on the GPU, as the
level of parallelism, M , increases, the time per iteration decreases, albeit with diminishing marginal
returns. The CPU speedups in the backward pass stall at M = 4 as the CPU only has 4 cores, while
the forward simulation is slower, for increased M , due to deeper serial line searches.

For the CPU implementation, we also observed that parallelization can improve the speed

of the backward pass until the number of available cores (4) is saturated at which point

performance stagnates. For the forward simulation, we found that slower paths to convergence,

and thus deeper line searches, quickly outweighed the running time gains due to parallelism.

This is most evident in the increase in the time for the forward simulation as M grows from 8

to 64. By contrast, the GPU implementation is able to run the line search fully in parallel,

which led to reductions in running time for both the backward pass and the forward simulation

as M increases. However, there are diminishing returns. First, kernel launch overhead begins

to dominate the running time as parallelization is increased. Second, since the next iteration

setup is always fully parallelized, and for each line search option the consensus sweep cannot

be parallelized, the running times for both steps remain constant. In fact, by the M = 64

31

case, the consensus sweep was almost a third of the total computational time for the GPU as

compared to only 17 percent for the M = 2 case.

This increased speed per iteration and decreased convergence rate leads to a level of parallelism

which optimizes the time to convergence, as shown in Figure 4.5. There we find that in the

M = 1 and M = 2 cases, the CPU is able to leverage its higher clock rate to outperform

the GPU. However, the GPU is able to better exploit the algorithm-level parallelism and

outperform the CPU for M > 2. For this experiment the dynamics computations required are

simple enough, and the problem size is small enough, that the fastest approach is CPU M = 1

indicating that on simple problems the overheads from parallelism outweighs the gains.

Figure 4.5: Median cost for the first 20 milliseconds of the quadrotor experiment. We find that the
decreases in time per iteration gained from parallelism are outweighed by the decreases in convergence
rate indicating that on simple problems, the overheads from parallelism outweighs the gains.

4.3.2 Manipulator

We then consider the Kuka LBR IIWA-14 manipulator which has 7 inputs corresponding to

torques on the 7 joints. The nominal configuration is defined as the manipulator pointing

straight up in the air. We solved a trajectory optimization task from a start state to a goal state

32

across the workspace depicted in Figure 4.6. We set Q = blkdiag(0.01× I7x7, 0.001× I7x7),

R = 0.001×I7x7, QN = 1000×I14x14. We solved the problem over a 0.5 second trajectory with

N = 64, MF = MB = M = 1, 2, 4, 8, 16, 32, a 1st-order Euler integrator, and σ = 0.001.

Figure 4.6: Start (left) and goal (right) states for the manipulator experiment.

Figure 4.7 shows that parallelism leads to speedups in time per iteration on the GPU and

CPU. We see that again on the GPU both the forward simulation and backward pass decrease

in time as M increases. On the CPU we again see that the backward pass decreases in

time until the CPU runs out of cores at M = 4, while the forward simulation time varies

non-monotonically for different values of M depending on the parallelization speedup and

the depth of line search slowdown. With all cases having a median time per iteration under

5ms, both our GPU and CPU implementations are able to perform at speeds reported as

state-of-the-art [2; 4; 37; 64; 65; 66].

Unlike in the quadrotor example, the more computationally expensive forward dynamics and

increased problem size in this example led to performance gains from parallelism as shown in

Figure 4.8. We find that the GPU is able to successfully exploit the algorithm-level parallelism

with faster convergence from M = 2, 4, 8, 16 than M = 1 and that M = 32 on the GPU

converges in about the same time as the CPU’s fastest standard option, M = 2. We also

tested various combinations of the number of blocks for the forward and backward passes until

33

we found the best possible CPU variant for this problem (Mf = 2 and Mb = 4) and found

that GPU M = 2, 4, 8, 16 still converge faster.

Figure 4.7: Median time per iteration for the manipulator experiment. We again find that the GPU
gets faster with increased parallelism. In this case the CPU also gets faster until M = 4. Also the fully
parallel next iteration setup is much faster on the GPU than CPU. Taken together all of these effects
show the increased speedups available from parallelism as the total computational complexity grows.

Figure 4.8: Median cost for the first 70 milliseconds of the manipulator experiment. We find that
the GPU is able to successfully exploit the algorithm-level parallelism with faster convergence from
M = 2, 4, 8, 16 than M = 1 and that M = 32 on the GPU converges in about the same time as the
CPU’s fastest standard option, M = 2. This all shows the power of parallelism for improving the
overall performance of computationally expensive tasks.

34

4.4 Whole-body, Nonlinear MPC Experiments

To better understand these results and the applicability of our GPU implementation for online

model-predictive control, we conducted a goal tracking experiment with the manipulator

in simulation and on a physical robot. These experiments demonstrated the feasibility of

this approach in the presence of model discrepancies and communication delays between the

robot and GPU. We also found that higher control rates generally lead to better tracking

performance across a range of parallelization options, further reinforcing the importance of

improved end-to-end latency.

4.4.1 Simulation Experiments

We began by testing our implementation in simulation to prove the validity of using PDDP

for whole-body, nonlinear MPC. At each control step we ran our fastest solver, the GPU

M = 4 implementation, with a maximum time budget of 10ms. We warm started the iLQR

algorithm by shifting all variables from the previous solve by the control duration and then

rolling out a new initial state trajectory starting from the current measured state (with a

gravity compensating input at the trailing knot points). During optimization periods, we

simulated the system forward in realtime using the previously computed solution.

We considered a end-effector pose tracking task where the goal moved continuously along a

figure eight path. We modified our cost function to include the end-effector error:

J =
1

2
(ee(qN)− eegoal)TQN (ee(qN)− eegoal) +

1

2
q̇TN Q̇N q̇N

N−1∑
k=0

1

2
(ee(qk)− eegoal)TQ(ee(qk)− eegoal) +

1

2
q̇Tk Q̇q̇k +

1

2
uTkRuk,

(4.9)

where we include the quadratic penalty on q̇ to encourage a stable final position. We set

Q = blkdiag(0.01× I3x3, 0× I3x3), R = 0.0001× I7x7, QN = blkdiag(1000× I3x3, 0× I3x3),

Q̇ = 0.1× I7x7, Q̇N = 10× I7x7. At each control step we solved the problem using a first-order

Euler integrator and N = 64 knot points over a 0.5 second trajectory horizon. The full figure

eight trajectory we were tracking had a period of 10 seconds. To initialize the experiment, we

35

held the first goal pose constant until both ||ee(q) − eegoal||22 and ||q̇||22 were both less than

0.05 at which point the goal began moving along the figure eight path.

Figure 4.9 shows the trajectory computed by running the MPC experiment starting from an

initial vertical state. Aside from confirming that good tracking performance is possible, we

observed that the bookkeeping needed to implement MPC on a GPU does add delays in the

control loop. In particular, the shifting of the previous variables and rolling out from the

updated starting state takes almost 1.4 ms on average. Since GPU M = 4 is able to compute

iterations in about 1.2ms, this MPC initialization step is quite expensive. We expect there

are potential avenues for improving this overhead through better software engineering (e.g., by

using circular buffers to reduce memory copy operations).

Figure 4.9: Executed trajectory (red) vs. goal trajectory (blue) for the MPC experiment, showing good
tracking performance for our GPU implementation of PDDP in simulation.

36

4.4.2 Hardware Experiments

We then ran a figure eight goal tracking experiment with the physical Kuka arm sweeping

control step duration and amount of algorithm level parallelism. We used the same cost

function as in the simulation experiments in Section 4.4.1 and again warm started our solver

by shifting all variables from the previous solve by the control step duration and then rolling

out a new initial state trajectory starting from the current measured state (with a gravity

compensating input at the trailing knot points). Simultaneously, we had another thread

executing the previously computed feedback controller. To initialize the experiment, we again

held the first goal pose constant until the 2-norm of the end-effector pose error and joint

velocity were both less than 0.05 at which point the goal began moving along the figure eight

path. Figure 4.10 shows the Kuka arm during one of these experiments.

Figure 4.10: The Kuka arm during a figure eight goal tracking experiment.

Figure 4.11 shows the average tracking error plotted against control step duration. We found

that good tracking performance is possible for a wide range of solvers, and a faster control

step duration generally had better tracking performance. This is shown by the fact that while

all of the points on the chart have a relatively small overall average tracking error, as the

control step duration increases, so to does the tracking error. We also found that solvers start

to fail when they had about as many (or less) iterations as the amount of algorithm level

parallelism (e.g., M = 4 with 3 or less iterations). Finally, we found that for a similar control

step duration, the solver that was able to take more iterations, a proxy for a more optimal

37

solution, had a lower tacking error. This indicates that, at least in this experimental setup,

beyond some minimal level of optimality, while a more optimal solution was always preferred,

delivering a sub-optimal solution faster outperformed a slow-to-update more optimal solution.

We hypothesize that this is due to the fact that a faster update better accounts for feedback

from the real world and can better overcome structural issues like model discrepancies between

the physical robot and its simulated model. This tradeoff in optimality and control step

duration further reinforces the importance of developing low-latency solvers.

Figure 4.11: Tracking error for a range of solvers vs. control step duration. We found that good
tracking performance is possible for a wide range of solvers, and a faster control step duration generally
had better tracking performance. As such, beyond some minimal level of optimality, while a more
optimal solution was always preferred, delivering a sub-optimal solution faster outperformed a slow-to-
update more optimal solution.

4.5 Conclusion and Future Work

We presented an analysis of a parallel multiple-shooting iLQR algorithm that achieves state-

of-the-art performance on example whole-body, nonlinear, trajectory optimization and MPC

tasks both in simulation and on physical robot hardware. Our results show how parallelism,

and GPU acceleration, can be used to increase the convergence speed of DDP algorithms

38

and lead to better real-world MPC performance in some situations. However, tradeoffs exist

between convergence behavior and time per iteration as the degree of algorithm-level parallelism

increases, limiting the possible improvements from parallelism for DDP based algorithms and

implementations.

Several directions for future research remain. First, we used hand-optimized, custom, analytical

and numerical dynamics methods specific to the systems we considered to ensure good

performance on the GPU. Integrating these implementations in recently developed code-

generating CPU and GPU rigid body dynamics libraries [87; 100], which we discuss in

Chapter 5, would enable us to test these algorithms on a wider variety of robot models. Second,

it would be interesting to consider the performance impact of adding nonlinear constraints to

parallel iLQR using augmented Lagrangian or QP-based methods [44; 45; 46; 47; 48].

Other types of trajectory optimization formulations and algorithms may be more suitable

for large-scale parallelization on GPUs, such as direct transcription and solvers based on the

alternating direction method of multipliers [101]. We intend to broaden our investigation

beyond DDP algorithms in future work and present preliminary results in the development of

GPU accelerated direct methods in Chapter 6.

Finally, in future work we would like to evaluate parallel trajectory optimization algorithms for

MPC using low-power mobile parallel compute platforms such as the NVIDIA Jetson.

39

Chapter 5

GRiD: GPU Accelerated Rigid Body

Dynamics with Analytical Gradients

Rigid body dynamics algorithms and their gradients are bottleneck computations for state-

of-the-art implementations of whole-body, nonlinear MPC, consuming 30% to 90% of the

total computational time as shown in Figure 5.1 [1; 2; 3; 4]. As such, in this chapter, we

explore further opportunities to increase the performance of whole-body, nonlinear MPC by

accelerating rigid body dynamics.

Figure 5.1: Recent research indicates that rigid body dynamics gradients consume 30-90% of the total
computational time of whole-body, nonlinear MPC [1; 2; 3].

40

Despite being highly accurate and optimized, existing implementations of spatial-algebra-based

approaches to rigid body dynamics do not take advantage of opportunities for parallelism

present in the algorithm, limiting their performance [1; 100; 102; 103]. This is critical because

there is natural parallelism in many computations involving rigid body dynamics. For example,

the computation of the gradient of forward dynamics in most trajectory optimization algorithms

is naturally parallel across the discrete points in the trajectory. Furthermore, as discussed

in Section 3, the performance of multi-core CPUs has been limited by thermal dissipation,

enforcing a utilization wall that restricts the performance a single chip can deliver [5; 6]. This

has motivated increased use of GPUs, which can provide opportunities for higher performance

by supporting larger-scale parallelism within a single chip.

In this chapter, we describe GRiD, a GPU-accelerated library for spatial-algebra-based rigid

body dynamics and their analytical gradients. GRiD is designed to accelerate whole-body,

nonlinear MPC by using blocks of GPU threads to compute the tens to hundreds of naturally

parallel computations of rigid body dynamics and their gradients found in these algorithms.

GRiD implements the more accurate spatial-algebra-based formulation [16] of rigid body

dynamics used in state-of-the-art trajectory optimization [104; 105; 106; 107] and was the

result of a series of papers exploring how to design easy-to-use, hardware-optimized, open-source

implementations of rigid body dynamics algorithms [85; 86; 87].

GRiD not only unlocks the ability for whole-body, nonlinear trajectory optimization to run

entirely on the GPU, but when performing multiple computations of rigid body dynamics and

their gradients, it provides as much as a 7.2x speedup over a state-of-the-art, multi-threaded

CPU implementation. GRiD also enables the use of a GPU as a rigid body physics accelerator

for algorithms that are computed on a host CPU, maintaining as much as a 2.5x speedup

when accounting for the I/O communication overhead between the CPU and GPU.

We released GRiD as an open-source library to enable robotics researchers to better explore

and leverage the performance gains from large-scale parallelism on GPU platforms. GRiD can

be found at https://github.com/robot-acceleration/grid.

41

https://github.com/robot-acceleration/grid

5.1 Related Work

GRiD is designed to provide general-purpose, spatial-algebra-based dynamics with analytical

gradients, and to accelerate them through large-scale parallelism on the GPU.

While there are many existing state-of-the-art spatial-algebra-based rigid body dynamics

libraries [100; 102; 108; 109; 110], these libraries are not optimized for GPUs [3]. The exception

is the recently released NVIDIA Isaac Sim [111] which supports spatial-algebra-based forward

simulation, but not gradients, on the GPU.

As such, prior work using spatial-algebra-based approaches for planning and control on GPUs

were either limited to cars, drones, and other lower degrees-of-freedom systems [112], or relied

on manually-optimized implementations of rigid body dynamics and their gradients for a

specific robot model [3]. Most machine learning approaches that leverage spatial-algebra-based

rigid body dynamics rely on these aforementioned libraries [14; 111].

Using automatic differentiation, differentiable physics engines can also support gradient

computations and have shown promise for real-time nonlinear MPC use on CPUs [113] and

for accelerating machine learning, computer graphics, and soft robotics applications [107; 114;

115; 116; 117; 118; 119; 120] on CPUs and GPUs. However, existing GPU-based differentiable

physics engines are optimized for simulating thousands of interacting bodies through contact

using maximal coordinate, particle, and mesh-based approaches, which are less accurate when

used for rigid body robotics applications over longer time step durations [104; 107].

GPUs have also historically been used to accelerate gradient computations through numerical

differentiation [121; 122]. However, these methods have been shown to have less favorable

numerical properties when used for robotic planning, control, and machine learning.

42

5.2 Rigid Body Dynamics Background

State-of-the-art spatial-algebra-based rigid body dynamics algorithms [16] operate in minimal

coordinates and compute functions of the joint position q ∈ Rnq , velocity q̇ ∈ Rnv , acceleration

q̈ ∈ Rnv , and input torque τ ∈ Rmτ that satisfy:

M(q)q̈ + C(q, q̇)q̇ +G(q) = B(q)τ + J(q)TF (5.1)

where M(q) ∈ Rnq×nq is the mass matrix, C(q, q̇) ∈ Rnq×nv is a Coriolis matrix, G(q) ∈ Rnq

is the generalized gravity force, B ∈ Rnq×mτ maps control inputs into generalized forces, and

J(q) ∈ Rnq×p maps any external or constraint forces F ∈ Rp into generalized forces.

Common algorithms include: Forward Dynamics, computing q̈ when given q, q̇, τ , and op-

tionally F ; Inverse Dynamics, computing τ when given q, q̇, q̈ and optionally F ; as well as

the computations of the various terms present in Equation 5.1. We note that common im-

plementations of forward dynamics leverage either the Articulated Body Algorithm (ABA)

or a combination of the Composite Rigid Body Algorithm (CRBA) to compute M and the

Recursive Newton-Euler Algorithm (RNEA) for inverse dynamics, as follows:

q̈ = ABA(q, q̇, τ, F)

q̈ = M−1(τ − c) where M = CRBA(q) and c = RNEA(q, q̇, 0, F).

(5.2)

Previous work has also showed that the most efficient way to compute the gradients of forward

dynamics is through the direct computation of the inverse of the mass matrix, M−1(q), and

the computation of the gradient of inverse dynamics [1],

∇q̈ = −M−1(q)∇RNEA(q, q̇, q̈, F). (5.3)

For more information on spatial-algebra-based rigid body dynamics we suggest reading Feath-

erstone’s Rigid Body Dynamics Algorithms [16].

43

5.3 The GRiD Library

In order to enable the broader robotics community to leverage GPU acceleration, our over-

arching design methodology was to make GRiD easily adoptable and extensible. As such,

the resulting optimized CUDA C++ code is designed to be header-only with only a single

dependency, the standard cuda_runtime.h library. In fact, even during URDF parsing

and code generation, GRiD only requires the beautifulsoup4, lxml, numpy, and sympy

Python libraries. Furthermore, we designed GRiD to be used by both GPU experts and novices.

As such, we provide an API that allows users to integrate GRiD either directly into their

existing CUDA code or through standard CPU C++ function calls, and also provide functions

to automatically initialize and allocate all necessary memory on the CPU and GPU.

The GRiD library is built using a set of modular open-source packages (shown in Figure 5.2)

to enable easy extension, and re-use by other robotics researchers. GRiD wraps and automates

our GPU code generation engine (GRiDCodeGenerator), a self-contained URDF parser

(URDFParser), and a set of reference implementations of rigid body dynamics algorithms

(RBDReference) that can be used for code validation and testing. We also provide the bench-

mark experiments as described in Section 5.5.2 as a separate package (GRiDBenchmarks),

as they require the support of additional external libraries to provide reference timings.

Figure 5.2: The GRiD library package ecosystem takes an input URDF file and outputs optimized
CUDA C++ code which can be validated against reference outputs and benchmarked for performance.

44

The GRiD library currently fully supports any robot model consisting of revolute, prismatic,

and fixed joints, and implements the following rigid body dynamics algorithms:

• The Recursive Newton Euler Algorithm (RNEA) for inverse dynamics [16];

• The direct inverse of mass matrix (M−1) [1];

• Forward dynamics via q̈ = −M−1(τ − RNEA(q, q̇, 0)) [16];

• The analytical gradient of inverse dynamics (∇RNEA) with respect to the robot’s

position and velocity (q, q̇) [1];

• The analytical gradient of forward dynamics with respect to the robot’s position, velocity,

and input torque (q, q̇, τ) via ∇q̈ = −M−1∇RNEA(q, q̇, q̈) [1].

Directions for future work include extending this core with additional algorithms and joint

types (see Section 5.6).

5.4 GRiD’s Design and Optimizations

This section describes the hardware-software co-design of GRiD’s optimized URDF driven code

generation aimed at producing GPU-accelerated rigid body dynamics algorithms and their

gradients for use with whole-body, nonlinear MPC. This section begins by introducing the

key algorithmic features of spatial-algebra-based rigid body dynamics algorithms and their

gradients (Section 5.4.1), and then describes how GRiD refactors these algorithms to better

map them to GPU hardware (Section 5.4.2). In this section we use the gradient of inverse

dynamics (Algorithm 3) to describe our refactoring approach, but note that the other rigid

body dynamics algorithms implemented by GRiD, as described in Section 5.3, exhibit similar

computational patterns and are optimized and accelerated in similar ways (see Appendix A

for other refactorings).

45

Algorithm 3: ∇RNEA(q̇, v, a, f,X, S, I) → ∂c/∂u

1: for frame i = 1 : N do

2: ∂vi
∂u = iXλi

∂vλi
∂u +

(
iXλi

vλi

)
× Si u ≡ q

Si u ≡ q̇

3: ∂ai
∂u = iXλi

∂aλi
∂u +

∂vλi
∂u × Siq̇i +

(
iXλi

aλi

)
× Si

vi × Si

4: ∂fi
∂u = Ii

∂ai
∂u + ∂vi

∂u ×
∗ Iivi + vi ×∗ Ii

∂vi
∂u

5: for frame i = N : 1 do

6: ∂ci
∂u = ST

i
∂fi
∂u

7:
∂fλi
∂u += iXT

λi

∂fi
∂u + iXT

λi
(Si ×∗ fi)

5.4.1 Key Features of Rigid Body Dynamics Algorithms

In order to design accelerated implementations of spatial-algebra-based rigid body dynamics

algorithms for use with nonlinear MPC, it is important to first identify the key algorithmic

features of the algorithms as these structural properties interact and impact the computation

differently, and in compounding ways, on different hardware platform.

Spatial-algebra-based rigid body dynamics algorithms represents most intermediate quantities

during computations as operations over vectors in R6 and matrices in R6×6, defined in the

frame of each rigid body. These frames are numbered i = 1 to n such that each body’s

parent λi is a lower number. Most rigid body dynamics algorithms operate via outward and

inward loops over these frames collecting and transforming forces, accelerations, velocities,

and inertias. Transformation matrices from frame λi to i are denoted as iXλi
and can be

constructed from the rotation and translation between the two coordinate frames, which

themselves are functions of the joint position qi between those frames and constants derived

from the robot’s topology. The mass distribution of each link is denoted by its spatial inertia

Ii, and Si is a joint-dependent term denoting in which directions a joint can move (and is often

a constant). Finally, spatial algebra uses spatial cross product operators × and ×∗, in which a

46

vector is re-ordered into a matrix, and then a standard matrix multiplication is performed.

This reordering is shown in Equation 5.4 for v ∈ R6:

v× =

0 −v[2] v[1] 0 0 0

v[2] 0 −v[0] 0 0 0
−v[1] v[0] 0 0 0 0
0 −v[5] v[4] 0 −v[2] v[1]

v[5] 0 −v[3] v[2] 0 −v[0]
−v[4] v[3] 0 −v[1] v[0] 0

v×∗ = −v ×T .

(5.4)

As mentioned above, in this section we’ll explore the computational patterns found in these

algorithms through the lens of the gradient of inverse dynamics (Algorithm 3).

Coarse-Grained Parallelism: As mentioned in Chapter 2, many modern nonlinear MPC

implementations have a step that requires tens to hundreds of independent computations

of the gradient of rigid body dynamics [3; 25; 37; 65; 66], offering parallelism across these

long-running, independent computations.

Fine-Grained Parallelism: Algorithm 3 contains opportunities for additional shorter-

duration parallelism between columns of partial derivatives and also in low-level mathematical

operations, e.g., between the many independent dot-product operations within a single matrix-

matrix, or matrix-vector, multiplication. For example, the computation of each column j

of ∂{v, a, f, c}/∂uj can be computed in parallel. And, within each column, each value i of

∂{v, a, f, c}i/∂uj can be computed through parallel dot-products and scalar additions.

Structured Sparsity: The underlying matrices used throughout the algorithm exhibit

sparsity patterns that can be derived from the robot’s topology. For example, robots with

only revolute joints can be described such that all Si = [0, 0, 1, 0, 0, 0]T . In this way, all

computations that are right-multiplied by Si can be reduced to only computing and extracting

the third column (or value), which can remove as much as 83% of the computations. There

are also opportunities to exploit structured sparsity in the transformation matrices, iXλi
,

inertia matrices, Ii, and cross product matrices, × and ×∗, which are known to be 30% to

47

60% sparse [86]. These patterns are also defined at compile time, as they are based on the

structure of the robot’s kinematic tree or by construction, as shown in Equation 5.4.

Data Access Patterns: Algorithm 3 exhibits regular access patterns through its ordered

loops (assuming the local variables for each frame i are stored regularly in memory). This

enables quick and easy computations of memory address locations, batching of loads and

stores, and even “pre-fetching” of anticipated memory loads in advance. However, the cross

product operations are reorderings, leading to irregular memory access patterns.

Sequential Dependencies: Throughout the algorithm, local variables have references to

parent or child frames whose values are computed in previous loop iterations. For example,

the computations of ∂{v, a, f}/∂u in lines 2, 3, and 7.

Working Set Size: Algorithm 3 has a relatively small working set. It most frequently accesses

only a few local variables between loop iterations, and a set of small matrices, in particular,

Ii and iXλi
∈ R6×6. This means that the working set can easily fit into small fast hardware

memory structures, e.g., caches.

I/O Overhead: Algorithm 3 requires a handful of different input values and produces a

matrix of output values which can require that a substantial amount of input and output (I/O)

data is sent to and received from hardware accelerators like GPUs. This can introduce long

latency delays in the system, slowing performance.

5.4.2 Mapping Rigid Body Dynamics Algorithms to the GPU

As mention in Chapter 3, as compared to a CPU, a GPU is a much larger set of very simple

processors, optimized specifically for parallel computations with identical instructions over

large working sets of data (e.g., large matrix-matrix multiplication). For maximal performance,

the GPU requires groups of threads within each thread block to compute the same operation

on memory accessed via regular patterns. As such, it is highly optimized for some types of

native parallelism present in our application, but is inefficient on others. Table 5.1 offers

48

Algorithmic Features CPU GPU

Coarse-Grained Parallelism moderate excellent
Fine-Grained Parallelism poor moderate

Structured Sparsity good moderate
Irregular Data Patterns moderate poor
Sequential Dependencies good poor
Small Working Set Size good moderate
I/O Overhead excellent poor

Table 5.1: Algorithmic features of the gradient of rigid body dynamics and qualitative assessments of
their suitability for different target hardware platforms. We find that in general, rigid body dynamics
algorithms when used in whole-body, nonlinear MPC algorithms are naturally well suited for the CPU,
but not for the GPU, outside of opportunities for coarse-grained parallelism between computations.

qualitative assessments of how well these algorithmic features, described in Section 5.4.1, can

be exploited by the CPU and GPU. This informed which advantageous features we could

leverage, or disadvantageous bottlenecks we had to mitigate in our design.

As noted by the “excellent” rating in Table 5.1, the GPU can use blocks of threads to efficiently

take advantage of large-scale, coarse-grained parallelism across many independent dynamics

computations. However, while there exist many opportunities for fine-grained parallelism

within each computation, as mentioned in the previous section, this parallelism can be harder

to exploit effectively on a GPU as there are many different low-level operations that can occur

simultaneously. For example, matrix vector multiplications, cross products, and additions

all appear in lines 2, 3, 4, and 7 of Algorithm 3. Without careful refactoring, this leads to

substantial amounts of thread divergence and low overall thread occupancy. This issue is

compounded by the sequential dependencies both between parent and child frames as well as

between the temporary variables ∂{v, a, f}/∂u which require multiple synchronization points

within every loop iteration. Finally, GPUs typically run at about half the clock speed of CPUs

(e.g., 1.44− 1.7GHz versus 3.6− 3.8GHz for the GPUs and CPUs evaluated in Section 5.5),

further hindering their performance on sequential code. These issues are the major performance

limitation of previous GPU implementations [3].

49

To address these bottlenecks, the core of our optimized GPU implementation is a refactored

version of Algorithm 3, shown in Algorithm 4. In this refactoring, we moved computations

with identical operations into the same parallel step to better fit the hardware’s computational

model. For example, in line 2 we compute a series of matrix vector multiplications, followed by

a series of cross product operations in line 3. We also re-ordered the computations to minimize

the amount of work done in serial loops, the main driver of sequential dependencies, at the

expense of generating even more temporary values. For example, we precomputed α in lines

2 and 3 of the initial parallel computations to reduce the amount of work done in the later

serial loop in lines 4-6.

Figure 5.3: An example robot topology.

We also inject additional optimizations to take advantage of further parallelism offered by

robot models with multiple branching points at different levels of the kinematic tree. Since

dependencies in the serial passes of rigid body dynamics algorithms are between parent and

child frames in the tree, we can compute “sibling” frames in parallel. For example, the first

loop of the ∇RNEA algorithm (Algorithm 3) computes the temporary variables ∂vi, ∂ai for

frame i as a function of ∂vλi
, ∂aλi

for its parent frame λi (Lines 2 and 3). Therefore, we can

compute each ∂vi, ∂ai by stepping serially through the levels of the tree, while computing all

frames within each level in parallel (Algorithm 4 lines 4-6 and 9-10). For the robot shown in

Figure 5.3, we compute the values associated with frame 0, then 1 and 5 in parallel, then 2, 4,

50

and 6 in parallel, and finally 3. GRiD also performs loop unrolling on these remaining serial

loops to enable the compiler to easily optimize the resulting code. We also note that once all

∂v, ∂a have been computed, all ∂f can be computed fully in parallel as each ∂fi only references

other values for frame i. That all said, due to the highly serial nature of the algorithm, serial

operations and synchronization points still existed in our final implementation.

Algorithm 4: ∇RNEA-GRiD(q̇, v, a, f,X, S, I) → ∂f/∂u

1: for frame i = 1 : n in parallel do

2: αi =
iXλi

vλi
βi =

iXλi
aλi

γi = Iivi

3: αi = αi × Si βi = βi × Si δi = vi × Si

4: for level l = 0 : lmax do

5: for frame i ∈ l in parallel do

6: ∂vi
∂u = iXλi

∂vλi
∂u +

αi u ≡ q

Si u ≡ q̇

7: for frame i = 1 : n in parallel do

8: ρi =
∂vλi
∂u × Siq̇i +

βi

δi

9: for level l = 0 : lmax do

10: for frame i ∈ l in parallel do

11: ∂ai
∂u = iXλi

∂aλi
∂u + ρi

12: for frame i = 1 : n in parallel do

13: ∂fi
∂u = ∂vi

∂u ×
∗ γi ηi = vi ×∗ Ii ζi = Si ×∗ fi

14: ∂fi
∂u = ∂fi

∂u + Ii
∂ai
∂u + ηi

∂vi
∂u ζi =

iXT
λi
ζi

15: for level l = lmax : 0 do

16: for frame i ∈ l in parallel do

17:
∂fλi
∂u += iXT

λi

∂fi
∂u + ζi

18: for frame i = n : 1 in parallel do

19: ∂ci
∂u = ST

i
∂fi
∂u

51

Out-of-order computations and irregular data access patterns are also inefficient to compute

on a GPU. It is important to avoid these, even at the expense of creating large numbers of

temporary variables. Due to the small working set size, even after generating these additional

temporary values we should, in theory, be able to fit everything in the GPU’s shared memory

(cache), minimizing latency penalties. Therefore, in our GPU implementation, and unlike in

state-of-the-art CPU implementations [85; 86; 100; 102; 123], we did not exploit the sparsity

in the X, ×, and ×∗ matrices. Instead, we used standard threaded matrix multiplication

for the X matrices. For the × and ×∗ matrices we initially used a two-step process to first

create temporary matrices to capture the re-ordering, and then used standard threaded matrix

multiplication to compute the final values. However, when supporting arbitrarily large robots

we realized that while the working set size of the serial algorithm is small, by refactoring the

algorithm to expose more parallelism, we generated an algorithm with a working set size which

grows proportionally to the number of frames in a robot model. Therefore, in order to ensure

that all of the temporary variables fit into the GPU cache, at code generation time, GRiD

determines if it is necessary to forgo any temporary memory computations in order to support

robots with many degrees-of-freedom (dof). For example, for the 30 dof Atlas humanoid, GRiD

does not compute each v× matrix in parallel and then use threaded matrix multiplication

(like we can do for the IIWA manipulator [85]), but instead computes v1 × v2 in a few parallel

threads, trading off a slight latency penalty for a large savings in shared memory usage.

GRiD also leverages the robot’s topology to determine sparsity patterns in the temporary

variables needed for the gradient computations. As such, columns of temporary memory

variables that would be all zeros are skipped and shared memory is compressed to effectively

remove those columns. For most robot models this leads to significant savings. For example,

reducing shared memory usage for the the quadruped robot HyQ [124] by more than 60%.

While this does complicate the memory addressing schema, most required offsets are computed

and cached at code generation time, minimizing the impact on latency. Furthermore, GRiD

employs non-branching if/else constructs (e.g., result = flag∗val1 + !flag∗val2) to

avoid branching for all other offsets and control flow switches where possible.

52

Finally, because data needs to be transferred between the GPU and a host CPU, I/O is a

serious constraint for GPUs. As such, we took a series of steps to minimize its impact on overall

performance. For example, to reduce the total I/O required by our GPU implementations,

we preloaded the constant I matrices and constant parts of the X matrices at startup. We

then explored a series of split and fused GPU kernels to analyze the I/O and compute

trade-offs induced by different problem partitionings between the CPU and GPU. These

experiments are detailed in Section 5.5 and ultimately reveal that the small latency tradeoffs of

increased computation on the GPU generally outweigh the I/O and synchronization overhead

of leveraging the CPU for those computations.

For memory transfers, we used the NVIDIA CUDA [60] library’s built-in functions for trans-

ferring data to and from the GPU over PCIe Gen3. To better leverage the PCIe data bus, we

ensured that all values were stored as a single contiguous block of memory. And, as suggested

by NVIDIA, we copied all of the needed data over to the GPU memory once, let it run, and

then copied all of the results back.

GRiD also employs further optimizations for certain classes of robot models. For example,

for all single chain robots, the parent’s frame number is always one less than the child’s. For

these robots, the code generated by GRiD will remove any indirect references to the parent

(or child) frame number and instead simply subtract (or add) one.

Finally, as noted at the beginning of this section, while we use the gradient of inverse dynamics

as the representative kernel for this section, GRiD applies similar patterns of refactorings,

memory compressions, and computational optimizations across all of the algorithms described

in Section 5.3. These refactorings can be found in Appendix A.

5.5 Benchmark Timing Results

We evaluated two timing metrics to understand the performance of our designs: the latency

of a single computation of the algorithm, and the end-to-end latency (including I/O and

53

other overhead) to execute a set of N computations. We compared GRiD against baseline

implementations on the CPU and GPU and against different problem partitionings of our

own implementations. In general, we compare timing results across three robot models:

the 7 degrees-of-freedom (dof) Kuka LBR IIWA-14 manipulator [125], the 12 dof HyQ

quadruped [124], and the 30 dof Atlas humanoid [24; 126]. For single computation and

multiple computation latency, we took the average of one million, and one hundred thousand

trials, respectively. For clean timing measurements on the CPU, we disabled TurboBoost, and

fixed the clock frequency to the maximum. We measured time with the Linux system call

clock_gettime(), using CLOCK_MONOTONIC as the source. Overall, we find that GRiD

scales to higher degrees of freedom systems and to higher numbers of parallel computations

better than baseline GPU and state-of-the-art CPU implementations. We also find that this

performance is maximized when we move as many of the computations onto the GPU as

possible, limiting I/O and synchronization overheads. This results in GRiD providing as much

as a 7.2x computational speedup over the CPU and maintaining as much as a 2.5x speedup

when accounting for I/O communication overhead.

5.5.1 Proof-Of-Concept Evaluations

In this section we compare our proof-of-concept optimized GPU implementation of the gradient

of forward dynamics for the Kuka LBR IIWA-14 manipulator [125] against a baseline CPU and

GPU implementation. We analyze both the latency of a single computation, as well as problem

partitioning between the CPU and GPU, and the throughput of multiple computations for

use with nonlinear MPC.

For the GPU baseline we used an existing hand-optimized implementation of rigid body

dynamics and its analytical gradients [3], as no full library exists for comparisons. For

the CPU baseline, we implemented our own hand-optimized CPU implementation leverag-

ing algorithmic and implementation insights from existing state-of-the-art CPU libraries

to ensure a fair comparison with our optimized GPU implementation [100; 102; 103]. For

more information on the CPU baseline implementation see Appendix B. For these evalua-

54

tions we used a high-performance workstation with a 3.6GHz quad-core Intel Core i7-7700

CPU and 1.7GHz NVIDIA GeForce GTX 2080 GPU running Ubuntu 18.04, CUDA 11.0,

Clang 10, and g++7.4. Source code accompanying these evaluations can be found at

https://github.com/plancherb1/fast-rbd-gradients.

Single Call Latency

The latency for a single computation of the baseline GPU implementation [3], our custom

baseline CPU implementation, and our proof-of-concept optimized GPU implementation of

the gradient of forward dynamics, excluding overheads is shown in Figure 5.4. We break the

latency time down into three steps:

• Yellow (RNEA): Computing the initial temporary variables v, a, f,X, S, and I.

• Blue (∇RNEA): Using those values to compute the temporary variable ∂c/∂u.

• Orange: Computing the final output by multiplying ∂c/∂u by the input M−1.

Figure 5.4: Latency of one computation of the gradient of rigid body dynamics for the Kuka
manipulator in the CPU and GPU baseline implementations, as compared to our proof-of-concept
optimized GPU implementation. We find that our proof-of-concept outperforms the baseline by 6.4x but
is still 2.5x slower than the CPU.

55

https://github.com/plancherb1/fast-rbd-gradients

The GPU implementations struggled against the CPU. Our proof-of-concept optimized imple-

mentation was outperformed by the CPU by 2.5x in this single computation test. This is due

to the fact that GPUs derive their benefit from throughput offered by large-scale parallelism,

not available with only one computation for the single branched IIWA manipulator. However,

for our optimized implementation, while the GPU v, a, f latency is 8.0x slower than the CPU,

the ∂c/∂u latency is only 2.0x slower. This improved scaling is the result of the re-factoring

done in Section 5.4 to expose more parallelism, and the increased level of parallelism available

in that step of the algorithm. Leveraging these optimizations, our GPU implementation

is 6.4x faster than the existing state-of-the-art [3], driven by a 9.2x speedup in the ∂c/∂u

step. We also note that the final M−1 multiplication step, shown in orange, is actually faster

for the GPU (0.36µs) than the CPU (0.44µs) as it is a standard, parallel-friendly, matrix

multiplication.

Problem Partitioning

In this section we explore the impact of changing the problem partitioning between the CPU

and GPU on the end-to-end latency of our implementations. Figure 5.5 compares (from left

to right within each group) “[s]plit”, “[f]used”, and “[c]ompletely fused” accelerated [G]PU

kernels for the gradient of forward dynamics (Equation 5.3). In the split kernel we only

computed the most parallel and compute-intensive section of the computation on the GPU,

∂c/∂u (Algorithm 4), while computing the inputs to the algorithm v, a, f,X, S, and I, as well

as the final multiplication with M−1 on the host CPU. In the initial fused kernel we minimized

I/O by computing both the inputs to the algorithm, v, a, f,X, S, and I, as well as ∂c/∂u on

the GPU. Finally, we also designed a completely-fused kernel which additionally takes M−1 as

an input and does the whole computation on the GPU. This lead to an increase in I/O as

compared to the fused kernel, but reduces both the number of synchronization points with, as

well as the total amount of computation done, on the CPU.

Figure 5.5 shows that by moving more of the computation onto the GPU increased the

computational latency, as expected. However, since the ∂c/∂u computation is by far the most

56

Figure 5.5: Runtime of N = 16, 32, 64, and 128 computations of our accelerated implementations of
the dynamics gradient kernel for the Kuka manipulator using different problem partitionings between
the CPU and [G]PU coprocessor: the [s]plit, [f]used, and [c]ompletely-fused kernels. We find that
removing synchronization points and moving more computations onto the GPU reduces overall latency.

expensive computation, and the GPU can easily compute many computations in parallel, the

increase is quite small. This can be seen in the slight increase from the blue to green to teal

bar in each group.

At the same time, the fused kernels have reduced I/O overhead, shown in the grey bars, which

is more important as N increases. Furthermore, removing the high-level algorithmic synchro-

nization points between the CPU and GPU, and the corresponding batched CPU computations,

shown by the checkered orange and yellow bars, greatly reduced overall latency.

By changing our problem partitioning and moving more computation onto the GPU (moving

from the “Gs” to “Gc” kernels), we improved the end-to-end latency of the optimized GPU

designs substantially: by 1.9x for N = 16, up to 2.8x for N = 128. This highlights the

importance of considering problem partitioning and I/O overhead.

57

End-to-End CPU and GPU Comparisons

Figure 5.6 compares our most-optimized proof-of-concept implementations across all hardware

platforms: the [C]PU implementation and the [G]PU [c]ompletely-fused implementations.

Within each group, the first bar is the CPU design, where the entire algorithm is computed in

4 persistent threads to make full use of the 4 processor cores without overtaxing them with

unnecessary additional threads.

The second bar is the “Gc” kernel which was able to provide a 1.2x to 3.0x performance

improvement over the CPU design for N = 16, 128 respectively. The GPU performed better as

the number of computations increased and despite being much slower than the CPU on a single

computation (Figure 5.4), outperformed the CPU on all tests using multiple computations.

This is driven mainly by the GPU’s ability to take advantage of both coarse-grained and

fine-grained parallelism and efficiently scale to multiple computations.

Figure 5.6: Runtime of N = 16, 32, 64, and 128 computations of the accelerated dynamics gradient
kernels for the Kuka manipulator for the [C]PU and [G]pu using the [c]ompletely-fused kernel. We find
that the GPU outperforms the CPU by 1.2x (N=16) to 3.0x (N=128).

58

5.5.2 GRiD Benchmark Evaluations

In this section we build on the results from the proof-of-concept implementation and benchmark

the final GRiD library against a state-of-the art CPU baseline, the Pinocchio library [100]1,

which supports optimized CPU code generation of both rigid body dynamics algorithms

and their analytical gradients. As with the proof-of-concept evaluations we compare both

the latency and throughput as well as the scalability of the implementations. In these

benchmarks we used a high-performance workstation with a 3.8GHz eight-core Intel Core

i7-10700K CPU and a 1.44GHz NVIDIA GeForce RTX 3080 GPU running Ubuntu 20.04,

CUDA 11.4, Clang 12, and g++9.4. We compare timing results across three representa-

tive robot models: the 7 degrees-of-freedom (dof) Kuka LBR IIWA-14 manipulator [125]

used in the proof-of-concept evaluations, the 12 dof HyQ quadruped [124], and the 30 dof

Atlas humanoid [24; 126]. Source code accompanying these evaluations can be found at

https://github.com/robot-acceleration/GRiDBenchmarks.

Single Computation Latency Scaling

In this secion we evaluate the latency scaling, excluding I/O overheads, of a single computation

of each rigid body dynamics algorithm, from IIWA to HyQ and IIWA to Atlas, on both the

CPU and GPU in Figure 5.7, and list absolute timings in Table 5.2. We also plot the scaling

of the robots’ dof as a measure of their computational complexity.

We find that the GPU is able to scale to more complex robots and algorithms better than the

CPU by taking advantage of fine-grained parallelism induced by independent robot limbs and

the independent columns of gradient computations. This is why GPUs are most advantageous

when used on computations where they can take advantage of both fine and coarse-grained

parallelism. As expected (and consistent with Section 5.5.1), the GPU is slower on a single

computation than the CPU, but the GPU demonstrates better scalability across both algorithm

and robot complexity. For example, as shown in Table 5.2, for ∇FD, the CPU is 4.4x faster

1We used the pinocchio3-preview branch to ensure we were using the latest, most optimized, code.

59

https://github.com/robot-acceleration/GRiDBenchmarks

than the GPU (2.9µs vs. 12.9µs), but only 2.0x faster for Atlas (20.9µs vs. 42.1µs). That

said, the CPU is still faster than the GPU for all individual computations, showing that GPU

acceleration only makes sense when there is sufficient parallel work to be done.

On the CPU, the latency of each algorithm scales directly with its computational intensity,

with the gradients requiring significantly more computation (see Table 5.2). The most

computationally intensive algorithm, the forward dynamics gradient (∇FD), takes 2.9, 4.3,

and 20.9 µs for IIWA, HyQ, and Atlas, while the simplest algorithm, inverse dynamics (ID)

takes 0.3, 0.3, and 1.1 µs—a 9.7x to 19.0x slowdown.

Figure 5.7: The scaling of single computation latency from IIWA to HyQ and IIWA to Atlas for both
the Pinocchio CPU baseline and the GRiD GPU library for various rigid body dynamics algorithms (ID
= Inverse Dynamics, Minv = Direct Minv, FD = Forward Dynamics and ∇ indicates the gradient of
that algorithm). We also plot the scaling of the robots’ dof as a measure of their increased complexity.
We find that the GPU is able to scale to more complex robots and algorithms better than the CPU by
taking advantage of fine-grained parallelism induced by independent robot limbs and the independent
columns of gradient computations.

Table 5.2: Single Computation Latency in µs Per Algorithm and Robot (ID = Inverse Dynamics, Minv =
Direct Minv, FD = Forward Dynamics and ∇ indicates the gradient of that algorithm)

CPU GPU

Algorithm IIWA HyQ Atlas IIWA HyQ Atlas

ID 0.3 0.3 1.1 3.0 3.2 8.0

Minv 0.5 0.8 3.4 5.2 5.6 17.4

FD 0.9 1.2 5.3 7.7 6.9 22.4

∇ID 1.4 2.1 9.8 6.3 5.8 19.5

∇FD 2.9 4.3 20.9 12.9 11.0 42.1

60

CPU latency also scales with the dof of the robot (Figure 5.7). For example, as the robot’s dof

increases by a factor of 1.7x from IIWA to HyQ, the computation time also increase by 1.1x,

for the O(N) ID algorithm, up to 1.5x, for the O(N2) ∇FD algorithm. It appears that this

strong performance is due to the code generation taking advantage of the the many shared

computations in the gradients, as well as the sparsity induced by HyQ’s independent limbs,

which decrease the longest path through the rigid body tree from 7 on IIWA to 3 on HyQ.

However, these optimizations are mitigated by the Atlas model, which has a much larger 30

dof, and a longest path through the rigid body tree of 8. Atlas has 4.3x the dof of IIWA, but

has a 3.9x (ID) to 7.2x (∇FD) slowdown on the CPU.

By contrast, the GPU is able improve its scalability by not only taking advantage of sparsity

and shared computations, but also the opportunities for fine-grained parallelism caused by

both independent limbs in complex robot models, and independent columns of the gradient

computations. For example, Table 5.2 shows that by taking advantage of parallelism in the

gradient computations, the GPU is not only able to compute ∇ID faster than FD, but also

only takes 12.9, 11.0, and 42.1 µs (for IIWA, HyQ, Atlas) for ∇FD as compared to 3.0,

3.2, and 8.0 µs for ID—a slowdown of only 3.4x to 5.3x, and a significant reduction from

the CPU’s 9.7x to 19.0x slowdown for these algorithms. Similarly, Figure 5.7 shows that

by leveraging limb-based parallelism, the GPU computes forward dynamics (FD) and both

gradients (∇ID,∇FD) faster for HyQ than for IIWA, and only has a 2.7x to 3.3x slowdown

from IIWA to Atlas, again a significant reduction from the CPU’s 3.9x to 7.2x.

Multiple Computation Latency

To characterize GRiD’s performance in a typical nonlinear trajectory optimization scenario,

which uses tens to hundreds of naturally parallel computations of dynamics algorithms, we

evaluate the latency for N = 16, 32, 64, 128, and 256 computations of the gradient of forward

dynamics using Pinocchio and GRiD across robot models in Figure 5.8. These times are

broken down into computation time on the CPU or GPU and the GPU I/O overhead. The

plot is overlayed with the speedup (or slowdown) of GRiD compared to Pinocchio in pure

61

computation alone, and also including I/O overhead. We use the gradient of forward dynamics

as our representative kernel because it uses many of the other kernels as sub-routines and is

the most computationally intense kernel, clearly demonstrating scaling trends.

The GPU outperforms the CPU on all but one of the multiple computation latency tests, even

when accounting for I/O. In the one test where the CPU is faster—for the fewest computations,

including I/O, for IIWA, the smallest robot with only a single limb—the GPU is still 0.9x

as fast. We note that the improved performance on the CPU as compared to Section 5.5.1

can be explained by a combination of the high performance of the Pinocchio library’s code

generation, the addition of the computation of M−1, as well as the increase from a 4 core to

an 8 core CPU, greatly improving the CPU’s parallel performance.

Even on the CPU, this benchmark shows how important it is to take advantage of coarse-

grained parallelism between computations. For example, the gradient of forward dynamics

Figure 5.8: Latency (including GPU I/O overhead) for N = 16, 32, 64, 128, and 256 computations
of the gradient of forward dynamics for both the Pinocchio CPU baseline and the GRiD GPU library
for various robot models (IIWA, HyQ, and Atlas). Overlayed is the speedup (or slowdown) of GRiD
as compared to Pinocchio both in terms of pure computation and including I/O overhead. We find
that in most cases the GPU outperforms the CPU and that outperformance increases as N increases.
However, I/O overhead is an increasing concern as N grows.

62

kernel (∇FD in Table 5.2) took 2.9, 4.3, and 20.9 µs for a single computation for IIWA, HyQ,

and Atlas respectively. If we ran it 256 times serially it would therefore take over 742, 1091,

and 5355 µs. As Figure 5.8 shows, computing it in parallel on 8-cores only takes 123, 172, 865

µs, saving 83-84% of the computation time.

However, since the CPU only has 8 cores, it is unable to efficiently scale to take advantage

of high numbers of naturally parallel computations, taking 5.4x, 6.2x, and 11.8x as long to

compute N = 256 as compared to N = 16 for IIWA, HyQ, and Atlas respectively.

The GPU, on the other hand, is designed to scale to higher numbers of computations without

incurring a latency penalty by launching independent blocks of threads for each computation.

In fact, for IIWA and HyQ, N = 256 takes only 1.3x and 1.5x as long as N = 16. This leads

to the GPU outperforming the CPU by 5.3x and 7.2x for N = 256, and maintaining a 2.5x

and 2.1x speedup when including I/O.

For the much higher-dof Atlas robot, the GPU still outperforms the CPU for N = 256 by 5.0x,

and 2.0x when including I/O. However, unlike with IIWA and HyQ, this performance increase

is almost identical to the increase at N = 64, 128. This stall in performance improvement

is caused by the large amount of shared memory needed for Atlas’s 30 dof which limits the

number of parallel blocks of threads that can fit concurrently on the GPU hardware. This

shows that while GPUs offer better scalability than CPUs, they too have physical hardware

limitations that need to be considered.

We also note that for both the CPU and GPU, the variance in timing results decreases as

the computational complexity increases. The GPU is very reliable with more than 90% of

times within 1% of the mean for all experiments and achieves over 99% of times within 1% of

the mean for N ≥ 64 for Atlas. The CPU, on the other hand, only has 95%, 87%, and 86%

of times within 1% of the mean for N = 256 for Atlas, HyQ, and IIWA respectively, which

drops to 81%, 73%, and 54% for N = 16. This suggests that GPU acceleration may be able to

provide both improved end-to-end latency, as well as improved reliability.

63

Finally, we note that for the GPU, I/O overhead accounts for 53-71% of the total time

for N = 256. This indicates that GRiD can provide the highest performance if integrated

directly into an entirely GPU-based algorithm, instead of being used to accelerate a step of a

CPU-based algorithm. In either case, however, if there is sufficient parallel work to be done,

GRiD can reduce overall computational latency.

5.6 Conclusion and Future Work

In this chapter, we introduced GRiD, a GPU-accelerated rigid body dynamics library with

analytical gradients. We found that by leveraging large-scale parallelism when performing

multiple computations of rigid body dynamics algorithms, GRiD can provide as much as a

7.2x speedup over a state-of-the-art, multi-threaded CPU implementation and maintains as

much as a 2.5x speedup when including I/O overhead.

There are many promising directions for future work to extend the functionality and versatility

of the GRiD library. We have current work under development to expand GRiD to support the

full breadth of rigid body dynamics algorithms and robot models supported by current state-

of-the-art CPU spatial-algebra-based rigid body dynamics libraries [100; 102; 108; 109; 110].

Additionally, we are developing wrappers to our C++ host functions in higher level languages

to make it even easier to leverage GRiD.

In future work, we would like to explore emerging rigid body dynamics algorithms and

alternate formulations and implementations of rigid body dynamics, which may improve

overall performance by exposing additional opportunities for parallelism, structured sparsity,

and improved computational efficiency [99; 127; 128; 129; 130; 131; 132; 133; 134].

We would also like to add support for differentiating through model parameters [135; 136], as

well as for contact, and hope to integrate these accelerated dynamics implementations into

existing robotics software frameworks [3; 48; 137; 138; 139]. This would increase both GRiD’s

ease-of-use and applicability to more robotics researchers.

64

Finally, building out increased support for more trajectory optimization, MPC, and ML

algorithms running entirely on the GPU would further increase the performance benefits from

integrating GRiD into these approaches as full GPU algorithms would eliminate the I/O and

synchronization overheads between the CPU and GPU.

65

Chapter 6

Towards MPC with GPU Accelerated

Direct Trajectory Optimization

This chapter explores the design of direct trajectory optimization methods that admit more

natural parallelism than the DDP based methods explored in Chapter 4, enabling more efficient

GPU parallelism and improved acceleration. We first derive our GPU accelerated direct

method, leveraging a structure exploiting Krylov subspace solver and a parallel symmetric stair

preconditioner. We then show preliminary results indicating that this algorithmic approach

results in improvements in condition number and spectral radius, leading to up to a 3.1x

reduction in iterations-to-converge on standard trajectory optimization problems. We also

find that our solver can be used for whole-body, nonlinear MPC.

6.1 Related Work

There has been a significant amount of prior work developing general purpose sparse lin-

ear system solvers on the GPU. Much of this work focus on designing factorization based

approaches [140; 141; 142; 143; 144; 145], and Krylov subspace solvers [54; 55; 57; 74; 146;

147; 148], that can efficient support general purpose sparse matrices and perform efficient

66

sparse matrix linear algebra operations. There has also been work developing and implement-

ing Block-Cyclic-Reduction and other tree-structured methods [149; 150; 151; 152] that are

optimized for block-tridiagonal systems.

For the nonlinear trajectory optimization problem, evolutionary, particle-swarm, Monte-

Carlo, and other sampling based approaches have been implemented on GPUs [83; 112;

153; 154; 155; 156; 157; 158; 159]. Most prior work on gradient-based parallel nonlinear

trajectory optimization has been fully confined to the CPU [64; 93; 94; 160], relied on the

CPU for many of the computations [161; 162], focused on optimizing BLAS functions on the

GPU [75; 82], or was limited to the naturally parallel Taylor expansions of the dynamics and

cost functions [84; 85; 87].

There are two existing lines of work fully implementing gradient-based parallel nonlinear

trajectory optimization on the GPU. The first, detailed in Chapter 4, leveraged shooting based

methods and found them to not expose much natural parallelism, limiting their performance [3;

68]. The second, used a Block-Cyclic-Reduction-based direct method to exploit the particular

structure exposed by position based dynamics [163].

This chapter adds to this literature by designing a parallel symmetric stair preconditioner and

a GPU-accelerated, gradient-based, nonlinear, direct trajectory optimization solver that is

designed for the the more accurate spatial-algebra-based dynamics discussed in Chapter 5.

6.2 GPU-Accelerated Direct Trajectory Optimization

In this section we describe the design of our GPU-accelerated parallel direct trajectory

optimization algorithm. Our algorithm is optimized to use blocks of parallel threads to exploit

the sparsity and parallelism exposed by direct methods through a structure exploiting Krylov

subspace solver and a parallel symmetric strair preconditioner. Our algorithm is particularly

optimized for the problem described in Equation 2.4, a trajectory optimization problem that

only has dynamics and an initial state constraint. However, as mentioned previously, this

67

formulation can support arbitrary constraints through the use of an augmented Lagrangian as

it only impacts the the numerical values of the cost and its Jacobian and Hessian, and not

their structure [47; 48]. Accordingly, we treat these terms as dense vectors and matrices where

appropriate below to provide a more general optimized trajectory optimization solver.

6.2.1 A Structure Exploiting PCG Solver for the GPU

In order to maximize the performance of our PCG solver on the GPU, we need to maximize

the amount of work done in parallel and minimize the amount of memory that needs to be

shared by the various blocks of threads. We note that the computations in PCG are dominated

by the large matrix vector multiplications with S and ϕ−1 in lines 5, 6, and 8 of Algorithm 1.

These operations produce a vector of size n ∗N where each of size n blocks of rows can be

done naturally in parallel by blocks of threads. Furthermore, if we know the bandwidth of

the Schur complement matrix S, which in our case is block tridiagonal, and the bandwidth

of the inverse of the preconditioner, Φ−1, which we call κ, we can minimize the amount of

blocks of vectors r, p that need to be shared across the blocks of threads. This results in

the minimal memory sharing GPU implementation of PCG as the remaining operations only

require parallel reductions of scalar values. This structure exploiting implementation of the

PCG algorithm optimized for the GPU is shown in Algorithm 5.

6.2.2 A Parallel Block-Tridiagonal Preconditioner

To further optimize the structure exploiting nature of the underlying PCG solver we also need

to be able to leverage a parallel preconditioner with a small bandwidth.

One polynomial splitting for block tridiagonal matrices that has been shown to outperform

Jacobi and Block-Jacobi methods is the stair based splitting [164; 165]:

S =

A0 B0

B1 A1 B2

B3 A2

 Ψ =

A0 0

B1 A1 B2

0 A2

 , (6.1)

68

Algorithm 5: GPU-PCG (S,Φ−1, γ, λ, ϵ) → λ∗

1: for block b = 0 : N in parallel do

2: rb = γb − Sbλb−1:b+1

3: Load rb−κ:b−1, rb+1:b+κ

4: r̃b, pb = Φ−1
b rb−κ:b+κ

5: ηb = rTb r̃b

6: η = ParallelReduce(ηb)

7: for iter i = 1 : max_iter do

8: for block b = 0 : N in parallel do

9: Load pb−1, pb+1

10: Υb = Sbpb−1:b+1

11: υb = pbΥb

12: υ = ParallelReduce(υb)

13: for block b = 0 : N in parallel do

14: α = η/υ

15: λb = λb + αpb

16: rb = rb − αΥb

17: for block b = 0 : N in parallel do

18: Load rb−κ:b−1, rb+1:b+κ

19: r̃b = Φ−1
b rb

20: η′b = rTb r̃b

21: η′ = ParallelReduce(η′b)

22: if η′ < ϵ then

23: return λ

24: for block b = 0 : N in parallel do

25: β = η′/η

26: η = η′

27: pb = r̃′b + βpb

Initialization

Main Loop

69

which has an analytical inverse,

Ψ−1 =

A−1

0 0

−A−1
1 B1A

−1
0 A−1

1 −A−1
1 B2A

−1
2

0 A−1
2

 . (6.2)

In order to maximize the structure exploiting nature of our PCG solver, we limit the bandwidth

of our preconditioner to be block-tridiagonal. As such we use a 0th order polynomial approxi-

mation, setting Φ−1 = Ψ−1. We then note that as S is symmetric, its inverse is also symmetric.

We can therefore compute a more accurate preconditoner by enforcing symmetry on the

preconditoner (and its inverse). This results in the following block-tridiagonal preconditioner:

Φ−1 =

A−1

0 −A−T
0 BT

1 A
−T
1

−A−1
1 B1A

−1
0 A−1

1 −A−1
1 B2A

−1
2

−A−T
2 BT

2 A
−T
1 A−1

2

 . (6.3)

6.2.3 Optimizing for the Trajectory Optimization Problem

At each iteration of the direct trajectory optimization problem we form a KKT system

(Equation 2.10) using the dynamics Jacobians Ak = fxk
, Bk = fuk

, and cost Jacobians and

Hessians Qk = Jxkxk
, Rk = Jukuk

, qk = Jxk
, rk = Juk

as follows:

G =

Q0

R0

. . .

QN

g =

[
q0 r0 q1 r1 . . . qN

]T

C =

I

−A0 −B0 I

. . . −AN−1 −BN−1 I

ek = xk+1 − f(xk, uk)

c =

[
xs − x0 e0 e1 . . . eN−1

]T
.

(6.4)

70

We can then define the following variables:

θk = −A0Q
−1
k AT

k −BkR
−1
k BT

k −Q−1
k+1

ϕk = AkQ
−1
k

ζk = AkQ
−1
k qk +BkR

−1
k rk −Q−1

k+1qk+1,

(6.5)

and use them to define our block-tridiagonal Schur complement system as follows:

S =

−Q−1
0 ϕT

0

ϕ0 θ0 ϕT
1

. . . ϕN−2 θN−2 ϕT
N−1

ϕN−1 θN−1

γ = c+

[
−Q−1

0 q0 ζ0 ζ1 . . . ζN−1

]T
.

(6.6)

As Q is usually symmetric, θ is also symmetric by construction, thus Q = QT , θ = θT , and

θ−1 = θ−T . Therefore, from Equation 6.3 this defines our custom parallel symmetric stair

preconditioner as:

Φ−1 =

−Q0 −Q0ϕ
T
0 θ

−1
0

−θ−1
0 ϕ0Q0 θ−1

0 −θ−1
0 ϕT

1 θ
−1
1

−θ−1
1 ϕ1θ

−1
0 θ−1

1

. . .

. (6.7)

As each row of S and Φ−1 only references cost and integrator information for two or three

knot points along the trajectory, and since each right off-diagonal of Φ−1
k is equivalent to the

transpose of the left off-diagonal of Φ−1
k+1, the computation of the preconditioner can be folded

in with the formation of the quadratic approximation of the problem in one unified set of

parallel operations as shown in Algorithm 6.

71

Algorithm 6: Setup for PCG - Stair (Z, λ→ S,Φ−1)

1: for block b = 0 : N in parallel do

2: x̃b+1, Ab, Bb = f,∇f(xb, ub)

3: Qb, Rb, qb, rb, Qb+1, qb+1 = ∇l(xb, ub, xb+1)

4: Compute θb, ϕb, γb per Equation 6.5 and 6.6

5: Compute θ−1
b

6: Load θ−1
b−1, and ϕT

b+1 to finish Sb per Equation 6.6

7: Compute the left off-diagonal of Φ−1
b per Equation 6.7

8: Load the right off-diagonal of Φ−1
b = (left off-diagonal of Φ−1

b+1)
T

6.2.4 The Overall Algorithm

The final overall algorithm then combines Algorithms 5, and 6 with a parallel line search as

shown in Algorithm 7. We leverage a parallel line search, as we showed that it can improve

convergence in Chapter 4. We do so by computing all possible iterates for α ∈ A in parallel

and selecting the iterate with the best merit function value, solving the following minimization

problem for the optimal line search iterate, α∗:

argmin
α∈A

M(Z + αδZ;µ)

s.t. Equation 2.12

(6.8)

Algorithm 7: GPU-Accelerated Direct Trajectory Optimization (Z, λ, ϵ,A→ Z∗)

1: for iter i = 1 : max_iter do

2: Setup for PCG with Algorithm 6

3: Solve for λ∗ with Algorithm 5

4: Compute δZ∗ per Equation 2.14

5: if |δZ∗| < ϵ then

6: return Z

7: Find α∗ per Equation 6.8

8: Z = Z + α∗δZ∗

72

6.3 Preliminary Experiments

In this section we describe a series of preliminary experiments that validate our algorithmic

approach. We find that not only does this algorithmic approach results in improvements

in condition number and spectral radius, leading to up to a 3.1x reduction in iterations-to-

converge on standard trajectory optimization problems, but we also find that our solver can

be used for whole-body, nonlinear MPC.

Both our baselines and proof-of-concept implementation of our symmetric stair preconditioner

and Algorithm 7 were implemented in Python. All experiments were run on a high-performance

workstation with a 3.8GHz eight-core Intel Core i7-10700K CPU running Ubuntu 20.04.

6.3.1 Proof-Of-Concept Parallel Preconditioner Evaluation

In this section we compare the efficacy of our symmetric stair preconditioner to baseline

approaches to parallel preconditioning across four dynamical systems: a double integrator, a

pendulum, a cart pole, and a Kuka LBR IIWA-14 manipulator [125].

As noted in Section 2.4.4, there are a variety of parallel preconditioning methods that have

been used in the literature, and deployed onto the GPU, with the most popular being the

jacobi and block-jacobi methods [54; 55]. For block banded matricies, like our block tridiagonal

Schur complement matrix, alternating and overlapping block preconditioners have also been

used in previous work [56; 57]. We use all four of these preconditioners as baselines.

For all four dynamics systems we use a quadratic cost function of the form:

J =
1

2
(xN − xg)

TQN (xN − xg) +

N−1∑
k=0

1

2
(xk − xg)

TQ(xk − xg) +
1

2
uTkRuk. (6.9)

For the double integrator we set Q = 0.01× I2x2, R = 0.0001, QN = 10× I2x2, and solve a 1

second trajectory with N = 10 knot points from xs = [0, 0] to xg = [1, 0]. For the pendulum we

solve the swing-up task from xs = [0, 0] to xg = [π, 0], set Q = I2x2, R = 0.1, QN = 100× I2x2,

and solve a 2 second trajectory with N = 20 knot points. For the cart pole we solve the

73

swing-up task from xs = [0, 0, 0, 0] to xg = [0, π, 0, 0], set Q = blkdiag(I2x2, 0.1 × I2x2),

R = 0.001, QN = 1000 × I4x4, and solve a 0.5 second trajectory with N = 40 knot points.

For the manipulator we solve a motion task across the workspace from Section 4.3.2, set

Q = blkdiag(0.1× I7x7, 0.01× I7x7), R = 0.001× I7x7, QN = 1000× I14x14, and solve a 0.5

second trajectory with N = 20 knot points.

Figure 6.1 shows the distribution of the magnitude of the Eigenvalues of the Schur complement

matrix for the initial conjugate gradient solve for each of the four dynamical systems on a log

scale. We report the values for both the original system, highlighted in orange, as well as after

apply the various preconditioners from the literature, highlighted in blue, and our symmetric

stair preconditioner, highlighted in green. The boxes denote the first, second, and third

quartiles of magnitudes and the whiskers denote either the maximum and minimum values or

1.5 times the interquartile range (whichever is closer to the first and third quartile). Outlier

points are denoted with circles and only appear above the top whisker for no preconditioner

for the manipulator as well as for the alternating block preconditioner for the cart pole and

manipulator.

Figure 6.2 additionally shows the condition number, the ratio of the absolute maximum to

the absolute minimum Eigenvalue, resulting from each of those sets of Eigenvalues on a log

scale, as well as the improvement achieved by our symmetric stair preconditioner over both the

original system, highlighted in yellow, and the best alternative from the literature, highlighted

in purple. As mentioned previously, closer grouped Eigenvalues, resulting in a lower condition

number, will both cause the algorithm to converge faster and improve the numerical stability

of the resulting conjugate gradient algorithm.

We see across all four systems that all of the preconditioners greatly reduce both the spectral

radius and the condition number of the Schur complement matrix. This reinforces the

importance of using preconditioning with iterative methods.

We also find that our symmetric stair preconditioner always produces the most well conditioned

74

Figure 6.1: Log scale box plots showing the range of the magnitude of the Eigenvalues in the Schur
complement matrix for each of the four dynamical systems both for the original system (in orange),
as well as after apply the various preconditioners from the literature (in blue), and our symmetric
stair preconditioner (in green). We find that, for all four systems, all of the preconditioners reduce the
overall magnitude of the Eigenvalues, and group them closer together, and that the symmetric stair
preconditioner is the only preconditioner which keeps the spectral radius ≤ 1.

Figure 6.2: A log scale bar chart showing the condition number of the Schur complement matrix for
each of the four dynamical systems both for the original system (in orange), as well as after apply the
various preconditioners from the literature (in blue), and our symmetric stair preconditioner (in green).
We find that, for all four systems, all of the preconditioners improve the numerical conditioning and
that the symmetric stair preconditioner results in the lowest condition number outperforming the best
alternatives by more than 2x.

75

system, 4.5x to 443.5x better than the original system, and 2.0x to 2.8x better than the best

preconditioner from the literature, the overlapping block preconditioner. We also find that our

preconditioner is the one that is able to keep the spectral radius to less than or equal to 1 for

all four systems. Taken together these results show that our preconditioner not only improves

the numerical stability of the resulting PCG solves, but is also the only preconditioner that

can guarantee convergence for the resulting PCG solve.

Figure 6.3: A log scale bar chart showing the average number of inner (preconditioned) conjugate
gradient iterations needed to solve the initial trajectory optimization problems for each of the four
dynamical systems both for the original problem (in orange), as well as after apply the various
preconditioners from the literature (in blue), and our symmetric stair preconditioner (in green). We
find that, for all four systems, all of the preconditioners reduce the number of iterations and that the
symmetric stair preconditioner outperforms the best alternative by up to 1.6x.

Figure 6.3 shows the the average number of inner (preconditioned) conjugate gradient iterations

needed to solve the initial trajectory optimization problems for each of the four dynamical

systems both for the original problem, highlighted in orange, as well as after apply the

various preconditioners from the literature, highlighted in blue, and our symmetric stair

preconditioner, highlighted in green. We also plot the improvement achieved by our symmetric

stair preconditioner over both the original system, highlighted in yellow, and the best alternative

from the literature, highlighted in purple. We find that our preconditioner results in 1.9x

to 3.1x reduction in the number of iterations over the original problem and maintains a

76

1.3x to 1.6x reduction over the best alternative from the literature, the overlapping block

preconditioner. This shows that not only does our preconditioner improve the numerical

conditioning of the systems, but also that this improved conditioning translates into improved

performance on trajectory optimization problems used for whole-body, nonlinear MPC. This is

crucial as a reduction in the number of inner PCG iterations directly translates to a reduction

in the overall computational latency of the outer trajectory optimization algorithm.

6.3.2 Proof-Of-Concept Nonlinear MPC Evaluation

We then evaluate our algorithms suitability for nonlinear MPC by comparing it to two baseline

approaches to solving the nonlinear trajectory optimization problem at each MPC control step

for both the pendulum and cart pole problems as defined in the previous section. At each

control step we warm started each solver by shifting all variables from the previous solve and

simulated the system forward using the previously computed solution.

For our first baseline, iLQR, we use the standard iLQR algorithm (PDDP with M = 1). As

discussed in Chapter 4, there is a growing evidence base that these approaches can be used for

realtime nonlinear MPC. For our second baseline, KKT-F, we use a standard factorization

approach to directly solve the KKT system produced by a direct trajectory optimization

approach (defined in Equation 2.10) through the use of the numpy.linalg package. We

use this second baseline as it represents the current standard method for direct trajectory

optimization on a CPU. Ideally our method would recover the same solution as the KKT-F

approach as it is solving the exact same direct trajectory optimization problem and simply

using a different numerical method to arrive at the solution (an iterative method instead of a

factorization method).

We plot the final pendulum trajectory and control inputs used during the nonlinear MPC

experiment for our symmetric stair, preconditioned conjugate gradient, Schur complement

based solver, Schur-PCG-SS, against the two baselines in Figure 6.4. We find that not only are

all three approaches able to converge to the goal state, but that they also produce very similar

77

trajectories. As hoped, our approach produces an almost identical solution to the KKT-F

baseline, showing their equivalence when used for nonlinear MPC.

In Figure 6.5 we plot the error between the current state and goal state at each control step

as well as the control inputs used during the cart pole nonlinear MPC experiment. We again

Figure 6.4: On the left, a scatter plot showing the resulting pendulum trajectory when using all
three approaches to solve the trajectory optimization problem at each control step: our symmetric
stair, preconditioned conjugate gradient, schur complement based solver (Schur-PCG-SS in green), the
baseline standard factorization approach to solve the direct trajectory optimization problem (KKT-F
in orange), and the baseline iLQR algorithm (iLQR in blue). On the right, the corresponding input
torques per control step. We find that not only are all three approaches are able to converge to the goal
position, but that our approach produces an almost identical solution to the KKT-F baseline.

Figure 6.5: On the left, a scatter plot showing the error between the current state at each control step
and goal state of the cart pole experiment using all three approaches to solve the trajectory optimization
problem: our symmetric stair, preconditioned conjugate gradient, schur complement based solver
(Schur-PCG-SS in green), the baseline standard factorization approach to solve the direct trajectory
optimization problem (KKT-F in orange), and the baseline iLQR algorithm (iLQR in blue). On the
right, the corresponding input torques per control step. We find that not only are all three approaches
able to converge to the goal state position, but that our approach again also produces an almost identical
solution to the KKT-F baseline.

78

plot results for our approach as well as the two baseline approaches. As with the previous

experiment we find that not only are all three approaches able to converge to the goal state, but

that our approach again produces an almost identical solution to the KKT-F approach.

Taken together, these experiments suggest that our approach to solving the nonlinear trajectory

optimization problems can be used for efficient whole-body, nonlinear MPC.

6.4 Conclusion and Future Work

In this chapter we described the design of a GPU accelerated direct trajectory optimization

algorithm leveraging a structure exploiting Krylov subspace solver and a parallel symmetric

stair preconditioner. We then showed preliminary results indicating that this algorithmic

approach results in better conditioned problems than many existing approaches, resulting in

improved performance in terms of iterations-to-convergence, and is applicable to nonlinear

MPC problems.

In future work we hope to implement this algorithm in CUDA and benchmark it on a GPU

for performance against other state-of-the-art CPU and GPU implementations of nonlinear

MPC. We hope to leverage the GRiD library (Chapter 5) in our implementation to ensure

we are using fully optimized rigid body dynamics kernels, and hope to release our resulting

implementation open-source for use by the wider robotics community.

We would also like to explore other approaches to solving the trajectory optimization problem

which may also expose significant amounts of natural parallelism (e.g., solvers based on the

alternating direction method of multipliers [101]), as well as other parallel-friendly approaches

to solving the KKT system (e.g., block-Cholesky factorizations [166]). Finally we would like to

compare trust region methods to our line search approach to better understand their relative

robustness, globalization abilities, and parallel computational patterns.

79

Chapter 7

Conclusion and Future Work

In this dissertation we explored the opportunities, benefits, and challenges of leveraging GPU

acceleration to develop real-time, whole-body, nonlinear MPC algorithms and implementations.

Through hardware-software co-design, we developed algorithms and implementations that

leveraged the strengths and minimized the weaknesses of the GPU. We also deployed our

implementations on a physical manipulator arm to demonstrate the feasibility of this approach

in the presence of model discrepancies and communication delays between the robot and GPU.

Overall, we found that GPU acceleration can provide nearly order-of-magnitude speedups over

state-of-the-art CPU implementations. To promote reproducibility and further development

and use of this work, we released our implementations open-source for use by the broader

robotics community.

Several directions for future research remain. Most importantly, we need to finish and

release open-source our CUDA implementation of our direct trajectory optimization algorithm

and benchmark it on a GPU for performance against other state-of-the-art CPU and GPU

implementations of nonlinear MPC. We also hope to integrate GRiD into our direct trajectory

optimization implementation, as well as into our PDDP implementation, and any additional

trajectory optimization algorithms we implement in the future.

80

Also, as noted in the previous chapters there are ample opportunities to explore alternate

formulations of both trajectory optimization algorithms [101; 166], as well as rigid body

dynamics algorithms [99; 127; 128; 129; 130; 131; 132; 133; 134], which may result in high

performance parallel algorithms. There are also many additional features that needed to be

added to our implementations to make them most useful to the wider robotics community. In

particular we hope to add support for the full breadth of rigid body dynamics algorithms and

robot models supported by current CPU libraries [100; 102; 108; 109; 110], as well as support

for additional nonlinear constraints (e.g., contact constraints) in our trajectory optimization

algorithms using augmented Lagrangian or QP-based methods [44; 45; 46; 47; 48].

Finally, we aim to develop a front-end to our algorithms in higher level languages, such as

Python and Julia, to reduce the barrier to entry for our GPU accelerated algorithms and

implementations. We hope that this work serves as a foundation to enable the broader robotics

community to access GPU-accelerated, real-time, whole-body, nonlinear MPC.

7.1 Hardware Acceleration Beyond the GPU

While this dissertation focuses on the fact that GPU acceleration can greatly improve the

computational performance of robotics algorithms, it may be possible to achieve further

acceleration by leveraging other parallel computer hardware architectures such as Field

Programmable Gate Arrays (FPGAs) and custom Application-Specific Integrated Circuits

(ASICs). While these types of computer hardware require significantly more work to design

algorithms and implementations, and result in designs that are much harder, if not impossible,

to modify, they can provide substantial amounts of parallelism without suffering from the rigid

computational model found on GPUs.

To explore the possibility of additional acceleration from FPGAs and ASICs, we performed an

initial experiment comparing the single computation latency of our proof-of-concept GPU and

hand-optimized CPU baseline implementations for the Kuka manipulator from Section 5.5.1 to

a proof-of-concept FPGA and synthesized ASIC implementation (see Appendix C for details

81

on their designs). For this experiment, we used a 3.6GHz quad-core Intel Core i7-7700 CPU

running Ubuntu 18.04 and CUDA 11, a 1.7GHz NVIDIA GeForce GTX 2080 GPU, and a

Virtex UltraScale+ VCU-118 FPGA synthesized at a clock speed of 55.6MHz. We synthesized

our ASIC using a Global Foundries 12nm technology node at the typical process corner.

The results of this experiment are shown in Figure 7.1. As noted in Section 5.5.1, the

GPU’s computational model is not well optimized for this single computation, and although

it outperforms the CPU in the multiple computation experiments, it is 2.5x slower than the

CPU in this experiment. The more customized computational models of the FPGA and ASIC

do not suffer from these issues and the FPGA outperforms the CPU by 5.6x, while the ASIC

outperforms the FPGA by an additional 7.2x. This means that a custom ASIC outperforms

the GPU by 99.4x. Notably, synthesis shows that our custom ASIC would be 65x smaller

than a standard CPU, implying that we could support many parallel computational units for

multiple computation use cases. Overall, this final experiment suggests that these alternative

parallel hardware architectures should be explored more in future work.

Figure 7.1: Latency of one computation of the gradient of rigid body dynamics for the Kuka
manipulator for our proof-of-concept optimized GPU implementation, optimized CPU baseline, and a
proof-of-concept FPGA and ASIC implementation. We find that FGPAs and ASICs can significantly
accelerate computations beyond the speeds available on CPUs and GPUs.

82

References

[1] J. Carpentier and N. Mansard, “Analytical derivatives of rigid body dynamics algorithms,”
in Robotics: Science and Systems, 2018.

[2] M. Neunert, C. de Crousaz, F. Furrer, M. Kamel, F. Farshidian, R. Siegwart, and
J. Buchli, “Fast nonlinear Model Predictive Control for unified trajectory optimization
and tracking,” in 2016 IEEE International Conference on Robotics and Automation
(ICRA), 2016, pp. 1398–1404.

[3] B. Plancher and S. Kuindersma, “A Performance Analysis of Parallel Differential Dynamic
Programming on a GPU,” in International Workshop on the Algorithmic Foundations of
Robotics (WAFR), 2018.

[4] J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, and
N. Mansard, “Whole-body Model-Predictive Control applied to the HRP-2 Humanoid,”
in Proceedings of the IEEE/RAS Conference on Intelligent Robots, 2015.

[5] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger, “Dark
Silicon and the End of Multicore Scaling,” in Proceedings of the 38th Annual International
Symposium on Computer Architecture (ISCA). ACM, pp. 365–376.

[6] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin, J. Lugo-Martinez,
S. Swanson, and M. B. Taylor, “Conservation Cores: Reducing the Energy of Mature
Computations,” in Proceedings of the ACM International Conference on Architectural
Support for Programming Languages and Operating Systems. ACM, pp. 205–218.

[7] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised learning using
graphics processors,” in Proceedings of the 26th annual international conference on
machine learning, 2009, pp. 873–880.

[8] S. Kuindersma, “Recent progress on atlas, the world’s most dynamic humanoid
robot,” 2020, Robotics Today - A series of technical talks. [Online]. Available:
https://www.youtube.com/watch?v=EGABAx52GKI

[9] L. Grossman, “Reinforcement learning to enable robust robotic model predictive control,”
Cambridge, MA, USA, May. 2020.

[10] J. Carius, F. Farshidian, and M. Hutter, “Mpc-net: A first principles guided policy
search,” IEEE Robotics and Automation Letters, vol. 5, no. 2, p. 2897–2904, Apr 2020.

83

https://www.youtube.com/watch?v=EGABAx52GKI

[11] M. Omer, R. Ahmed, B. Rosman, and S. F. Babikir, “Model predictive-actor critic
reinforcement learning for dexterous manipulation,” in 2020 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), 2021, pp. 1–6.

[12] D. Hoeller, F. Farshidian, and M. Hutter, “Deep value model predictive control,” in
Proceedings of the Conference on Robot Learning, ser. Proceedings of Machine Learning
Research, L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds., vol. 100, 30 Oct–01 Nov
2020, pp. 990–1004.

[13] S. Gros and M. Zanon, “Reinforcement learning for mixed-integer problems based on
mpc,” 2020.

[14] A. S. Morgan, D. Nandha, G. Chalvatzaki, C. D’Eramo, A. M. Dollar, and J. Peters,
“Model predictive actor-critic: Accelerating robot skill acquisition with deep reinforcement
learning,” 2021.

[15] G. De Michell and R. K. Gupta, “Hardware/software co-design,” Proceedings of the IEEE,
vol. 85, no. 3, pp. 349–365, 1997.

[16] R. Featherstone, Rigid Body Dynamics Algorithms. Springer, 2008.

[17] E. F. Camacho and C. B. Alba, Model predictive control. Springer science & business
media, 2013.

[18] S. Kajita, F. Kanehiro, K. Kaneko, K. Yokoi, and H. Hirukawa, “The 3d linear in-
verted pendulum mode: A simple modeling for a biped walking pattern generation,” in
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems. Expanding the Societal Role of Robotics in the the Next Millennium (Cat. No.
01CH37180), vol. 1. IEEE, 2001, pp. 239–246.

[19] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa,
“Biped walking pattern generation by using preview control of zero-moment point,” in
2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422),
vol. 2. IEEE, 2003, pp. 1620–1626.

[20] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dynamics of planar
biped walkers,” IEEE transactions on automatic control, vol. 48, no. 1, pp. 42–56, 2003.

[21] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “A compliant hybrid zero
dynamics controller for stable, efficient and fast bipedal walking on mabel,” The Inter-
national Journal of Robotics Research, vol. 30, no. 9, pp. 1170–1193, 2011.

[22] D. E. Orin, A. Goswami, and S.-H. Lee, “Centroidal dynamics of a humanoid robot,”
Autonomous robots, vol. 35, no. 2, pp. 161–176, 2013.

[23] H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body Motion Planning with Centroidal
Dynamics and Full Kinematics,” in Proceedings of the IEEE-RAS International Confer-
ence on Humanoid Robots, 2014.

84

[24] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen,
P. Marion, and R. Tedrake, “Optimization-based locomotion planning, estimation, and
control design for Atlas,” Auton. Robots, vol. 40, no. 3, pp. 429–455, 2016.

[25] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic locomotion
in the mit cheetah 3 through convex model-predictive control,” in 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, pp.
1–9.

[26] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, Feedback
control of dynamic bipedal robot locomotion. CRC press, 2018.

[27] J. T. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, ser.
Advances in Design and Control. Society for Industrial and Applied Mathematics
(SIAM), 2001, vol. 3.

[28] J. R. Dormand and P. J. Prince, “A family of embedded Runge-Kutta formulae,” Journal
of Computational and Applied Mathematics, vol. 6, no. 1, pp. 19–26, 1980.

[29] T. Fan, J. Schultz, and T. Murphey, “Efficient computation of higher-order variational
integrators in robotic simulation and trajectory optimization,” in International Workshop
on the Algorithmic Foundations of Robotics. Springer, 2018, pp. 689–706.

[30] Z. Manchester, N. Doshi, R. J. Wood, and S. Kuindersma, “Contact-implicit trajec-
tory optimization using variational integrators,” The International Journal of Robotics
Research, vol. 38, no. 12-13, pp. 1463–1476, 2019.

[31] W. Jallet, N. Mansard, and J. Carpentier, “Implicit differential dynamic programming,”
2021.

[32] I. Chatzinikolaidis and Z. Li, “Trajectory optimization of contact-rich motions using
implicit differential dynamic programming,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 2626–2633, 2021.

[33] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd ed. Springer, 2006.

[34] D. Q. Mayne, “A second-order gradient method of optimizing non- linear discrete time
systems,” Int J Control, vol. 3, p. 8595, 1966.

[35] D. H. Jacobson and D. Q. Mayne, “Differential dynamic programming,” 1970.

[36] R. Bellman, Dynamic Programming. Dover, 1957.

[37] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and Stabilization of Complex Behaviors
through Online Trajectory Optimization,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2012.

[38] W. Li and E. Todorov, “Iterative Linear Quadratic Regulator Design for Nonlinear
Biological Movement Systems,” in Proceedings of the 1st International Conference on
Informatics in Control, Automation and Robotics, 2004.

85

[39] L. Liao and C. A. Shoemaker, “Advantages of Differential Dynamic Programming Over
Newton’s Method for Discrete-time Optimal Control Problems,” 1992.

[40] Y. Tassa, “Theory and Implementation of Biomimetic Motor Controllers,” 2011.

[41] “A sequential quadratic programming algorithm for discrete optimal control problems
with control inequality constraints,” in Proceedings of the 28th IEEE Conference on
Decision and Control,, 1989.

[42] Y. Tassa, T. Erez, and E. Todorov, “Control-Limited Differential Dynamic Programming,”
in Proceedings of the International Conference on Robotics and Automation (ICRA),
2014.

[43] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An Efficient Optimal
Planning and Control Framework For Quadrupedal Locomotion,” 2016.

[44] Z. Xie, C. K. Liu, and K. Hauser, “Differential dynamic programming with nonlinear con-
straints,” in 2017 IEEE International Conference on Robotics and Automation (ICRA),
2017, pp. 695–702.

[45] Y. Aoyama, G. Boutselis, A. Patel, and E. A. Theodorou, “Constrained differential
dynamic programming revisited,” in 2021 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2021, pp. 9738–9744.

[46] W. Jallet, N. Mansard, and J. Carpentier, “Implicit differential dynamic programming,”
May 2022.

[47] B. Plancher, Z. Manchester, and S. Kuindersma, “Constrained Unscented Dynamic
Programming,” in Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

[48] T. Howell, B. Jackson, and Z. Manchester, “Altro: A fast solver for constrained trajec-
tory optimization,” in Proceedings of (IROS) IEEE/RSJ International Conference on
Intelligent Robots and Systems, November 2019, pp. 7674 – 7679.

[49] P. E. Gill, W. Murray, and M. A. Saunders, “SNOPT: An SQP Algorithm for Large-scale
Constrained Optimization,” SIAM Rev., vol. 47, no. 1, pp. 99–131, 2005.

[50] A. Wächter and L. T. Biegler, “On the Implementation of an Interior-point Filter Line-
search Algorithm for Large-scale Nonlinear Programming,” Math Program, vol. 106,
no. 1, pp. 25–57, 2006.

[51] M. Toussaint, “A Novel Augmented Lagrangian Approach for Inequalities and Convergent
Any-Time Non-Central Updates,” 2014.

[52] P. E. Gill, W. Murray, and M. H. Wright, Numerical linear algebra and optimization.
SIAM, 2021.

[53] J. R. Shewchuk, “An introduction to the conjugate gradient method without the agonizing
pain,” USA, Tech. Rep., 1994.

86

[54] G. Flegar et al., “Sparse linear system solvers on gpus: Parallel preconditioning, workload
balancing, and communication reduction,” Ph.D. dissertation, Universitat Jaume I, 2019.

[55] M. Schubiger, G. Banjac, and J. Lygeros, “Gpu acceleration of admm for large-scale
quadratic programming,” Journal of Parallel and Distributed Computing, vol. 144, pp.
55–67, 2020.

[56] E. Galligani and V. Ruggiero, “A polynomial preconditioner for block tridiagonal matri-
ces,” PARALLEL ALGORITHM AND APPLICATIONS, vol. 3, no. 3-4, pp. 227–237,
1994.

[57] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[58] S. Demko, W. F. Moss, and P. W. Smith, “Decay rates for inverses of band matrices,”
Mathematics of computation, vol. 43, no. 168, pp. 491–499, 1984.

[59] A. Williams, C++ Concurrency in Action : Practical Multithreading. Manning, 2012.

[60] NVIDIA, NVIDIA CUDA C Programming Guide, version 11.4 ed., 2022. [Online].
Available: http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[61] G. Wang, Y. Lin, and W. Yi, “Kernel fusion: An effective method for better power
efficiency on multithreaded gpu,” in 2010 IEEE/ACM Int’l Conference on Green Com-
puting and Communications & Int’l Conference on Cyber, Physical and Social Computing.
IEEE, 2010, pp. 344–350.

[62] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, et al., “The landscape of parallel
computing research: A view from berkeley,” 2006.

[63] W.-c. Feng, H. Lin, T. Scogland, and J. Zhang, “Opencl and the 13 dwarfs: a work in
progress,” in Proceedings of the 3rd acm/spec international conference on performance
engineering, 2012, pp. 291–294.

[64] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli, “Real-time motion
planning of legged robots: A model predictive control approach,” in 2017 IEEE-RAS
17th International Conference on Humanoid Robotics, 2017.

[65] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, and E. Todorov, “An integrated system
for real-time model predictive control of humanoid robots,” in 2013 13th IEEE-RAS
International Conference on Humanoid Robots, 2013.

[66] M. Neunert, F. Farshidian, A. W. Winkler, and J. Buchli, “Trajectory Optimization
Through Contacts and Automatic Gait Discovery for Quadrupeds,” IEEE Robotics and
Automation Letters, vol. 2, no. 3, pp. 1502–1509, 2017.

[67] M. Neunert, M. Stäuble, M. Giftthaler, C. D. Bellicoso, J. Carius, C. Gehring, M. Hutter,
and J. Buchli, “Whole-body nonlinear model predictive control through contacts for
quadrupeds,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1458–1465, 2018.

87

http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf

[68] B. Plancher and S. Kuindersma, “Realtime model predictive control using parallel ddp
on a gpu,” in Toward Online Optimal Control of Dynamic Robots Workshop at the 2019
International Conference on Robotics and Automation (ICRA), Montreal, Canada, May.
2019.

[69] E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse, P. Fernbach,
S. Tonneau, S. Vijayakumar, S. Calinon, et al., “Whole body model predictive control
with a memory of motion: Experiments on a torque-controlled talos,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2021, pp. 8202–
8208.

[70] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified mpc framework
for whole-body dynamic locomotion and manipulation,” IEEE Robotics and Automation
Letters, vol. 6, no. 3, pp. 4688–4695, 2021.

[71] S. Kleff, A. Meduri, R. Budhiraja, N. Mansard, and L. Righetti, “High-frequency nonlinear
model predictive control of a manipulator,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2021, pp. 7330–7336.

[72] D. Leineweber, “Efficient reduced SQP methods for the optimization of chemical processes
described by large sparse DAE models,” 1999.

[73] D. P. Word, J. Kang, J. Akesson, and C. D. Laird, “Efficient Parallel Solution of Large-
scale Nonlinear Dynamic Optimization Problems,” Comput Optim Appl, vol. 59, no. 3,
pp. 667–688.

[74] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, “Sparse Matrix Solvers on the GPU:
Conjugate Gradients and Multigrid,” in ACM SIGGRAPH 2003 Papers, ser. SIGGRAPH
’03. ACM, 2003, pp. 917–924.

[75] L. Yu, A. Goldsmith, and S. Di Cairano, “Efficient Convex Optimization on GPUs for
Embedded Model Predictive Control,” in Proceedings of the General Purpose GPUs, ser.
GPGPU-10. ACM, 2017, pp. 12–21.

[76] K. V. Ling, S. P. Yue, and J. M. Maciejowski, “A FPGA implementation of model
predictive control,” in 2006 American Control Conference, 2006.

[77] M. S. K. Lau, S. P. Yue, K. V. Ling, and J. M. Maciejowski, “A comparison of interior
point and active set methods for FPGA implementation of model predictive control,” in
2009 European Control Conference (ECC), 2009, pp. 156–161.

[78] H. J. Ferreau, A. Kozma, and M. Diehl, “A Parallel Active-Set Strategy to Solve Sparse
Parametric Quadratic Programs arising in MPC,” IFAC Proceedings Volumes, vol. 45,
no. 17, pp. 74–79, 2012.

[79] J. V. Frasch, S. Sager, and M. Diehl, “A parallel quadratic programming method for
dynamic optimization problems,” Math. Prog. Comp., vol. 7, no. 3, pp. 289–329, 2015.

[80] G. Frison, “Algorithms and Methods for Fast Model Predictive Control,” 2015.

88

[81] R. Quirynen, “Numerical simulation methods for embedded optimization,” 2017.

[82] Y. Huang, K. V. Ling, and S. See, “Solving Quadratic Programming Problems on
Graphics Processing Unit,” ASEAN Eng. J., 2011.

[83] D.-K. Phung, B. Hérissé, J. Marzat, and S. Bertrand, “Model Predictive Control for Au-
tonomous Navigation Using Embedded Graphics Processing Unit,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 11 883–11 888, 2017.

[84] T. Antony and M. J. Grant, “Rapid Indirect Trajectory Optimization on Highly Parallel
Computing Architectures,” J. Spacecr. Rockets, vol. 54, no. 5, pp. 1081–1091, 2017.

[85] B. Plancher, S. M. Neuman, T. Bourgeat, S. Kuindersma, S. Devadas, and V. J. Reddi,
“Accelerating robot dynamics gradients on a cpu, gpu, and fpga,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 2335–2342, 2021.

[86] S. M. Neuman, B. Plancher, T. Bourgeat, T. Tambe, S. Devadas, and V. J. Reddi,
“Robomorphic computing: A design methodology for domain-specific accelerators param-
eterized by robot morphology,” in International Conference on Architecture Support for
Programming Languages and Operating Systems (ASPLOS). ACM, 2021, p. 674–686.

[87] B. Plancher, S. M. Neuman, R. Ghosal, S. Kuindersma, and V. J. Reddi, “Grid: Gpu-
accelerated rigid body dynamics with analytical gradients,” in IEEE International
Conference on Robotics and Automation (ICRA), May 2022.

[88] A. Astudillo, J. Gillis, G. Pipeleers, W. Decré, and J. Swevers, “Speed-up of nonlinear
model predictive control for robot manipulators using task and data parallelism,” in
2022 IEEE 17th International Conference on Advanced Motion Control (AMC), 2022,
pp. 201–206.

[89] H. G. Bock and K.-J. Plitt, “A multiple shooting algorithm for direct solution of optimal
control problems,” IFAC Proc. Vol., vol. 17, no. 2, pp. 1603–1608, 1984.

[90] J. T. Betts and W. P. Huffman, “Trajectory optimization on a parallel processor,” J.
Guid. Control Dyn., vol. 14, no. 2, pp. 431–439, 1991.

[91] D. M. Garza, “Application of automatic differentiation to trajectory optimization via
direct multiple shooting,” 2003.

[92] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast Direct Multiple Shooting
Algorithms for Optimal Robot Control,” in Fast Motions in Biomechanics and Robotics.
Springer, Berlin, Heidelberg, 2006, pp. 65–93.

[93] D. Kouzoupis, R. Quirynen, B. Houska, and M. Diehl, “A Block Based ALADIN Scheme
for Highly Parallelizable Direct Optimal Control,” in Proceedings of the American Control
Conference.

[94] M. Giftthaler, M. Neunert, M. Stäuble, J. Buchli, and M. Diehl, “A Family of Iterative
Gauss-Newton Shooting Methods for Nonlinear Optimal Control,” 2017.

89

[95] E. Pellegrini and R. P. Russell, “A Multiple-Shooting Differential Dynamic Programming
Algorithm,” in AAS/AIAA Space Flight Mechanics Meeting, 2017.

[96] B. Plancher, “Parallel and constrained differential dynamic programming for model
predictive control,” Master’s thesis, Harvard University, Cambridge, MA, USA, May.
2019.

[97] M. Zinkevich, J. Langford, and A. J. Smola, “Slow Learners are Fast,” in Advances in
Neural Information Processing Systems 22. Curran Associates, Inc., pp. 2331–2339.

[98] Q. Ho, J. Cipar, H. Cui, J. K. Kim, S. Lee, P. B. Gibbons, G. A. Gibson, G. R.
Ganger, and E. P. Xing, “More Effective Distributed ML via a Stale Synchronous Parallel
Parameter Server,” Advances in Neural Information Processing Systems (NIPS), vol.
2013.

[99] Y. Yang, Y. Wu, and J. Pan, “Parallel Dynamics Computation Using Prefix Sum
Operations,” IEEE Robot. Autom. Lett., vol. 2, no. 3, pp. 1296–1303, 2017.

[100] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux, O. Stasse, and
N. Mansard, “The pinocchio c++ library : A fast and flexible implementation of
rigid body dynamics algorithms and their analytical derivatives,” in 2019 IEEE/SICE
International Symposium on System Integration (SII), 2019, pp. 614–619.

[101] S. Boyd, “Distributed Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Foundational Trends in Machine Learning, vol. 3, no. 1, pp.
1–122, 2010.

[102] M. Frigerio, J. Buchli, D. G. Caldwell, and C. Semini, “RobCoGen: A code generator
for efficient kinematics and dynamics of articulated robots, based on Domain Specific
Languages,” J. Softw. Eng. Robot. JOSER, vol. 7, no. 1, pp. 36–54, 2016.

[103] S. Neuman, T. Koolen, J. Drean, J. Miller, and S. Devadas, “Benchmarking and workload
analysis of robot dynamics algorithms,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2019.

[104] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based robotics: Compar-
ison of bullet, havok, mujoco, ode and physx,” in 2015 IEEE international conference on
robotics and automation (ICRA). IEEE, 2015, pp. 4397–4404.

[105] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified mpc framework
for whole-body dynamic locomotion and manipulation,” IEEE Robotics and Automation
Letters, vol. 6, no. 3, pp. 4688–4695, 2021.

[106] L. Drnach and Y. Zhao, “Robust trajectory optimization over uncertain terrain with
stochastic complementarity,” IEEE Robotics and Automation Letters, vol. 6, no. 2, pp.
1168–1175, 2021.

[107] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem, “Brax – a
differentiable physics engine for large scale rigid body simulation,” 2021.

90

[108] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-based control,”
in Proceedings of the IEEE-RAS International Conference on Intelligent Robots, 2012.

[109] T. Koolen and R. Deits, “Julia for robotics: simulation and real-time control in a
high-level programming language,” in 2019 International Conference on Robotics and
Automation (ICRA), 2019, pp. 604–611.

[110] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and feature-
complete differentiable physics for articulated rigid bodies with contact,” arXiv preprint
arXiv:2103.16021, 2021.

[111] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller,
N. Rudin, A. Allshire, A. Handa, and G. State, “Isaac gym: High performance gpu-based
physics simulation for robot learning,” 2021.

[112] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive path integral control:
From theory to parallel computation,” Journal of Guidance, Control, and Dynamics,
vol. 40, no. 2, pp. 344–357, 2017.

[113] M. Neunert, M. Giftthaler, M. Frigerio, C. Semini, and J. Buchli, “Fast Derivatives of
Rigid Body Dynamics for Control, Optimization and Estimation,” in IEEE Interna-
tional Conference on Simulation, Modeling, and Programming for Autonomous Robots
(SIMPAR), 2016.

[114] J. Bender, M. Müller, and M. Macklin, “A survey on position based dynamics, 2017,” in
Proceedings of the European Association for Computer Graphics: Tutorials, 2017, pp.
1–31.

[115] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and J. Z. Kolter, “End-to-
end differentiable physics for learning and control,” in Advances in neural information
processing systems, 2018, pp. 7178–7189.

[116] J. Degrave, M. Hermans, J. Dambre, et al., “A differentiable physics engine for deep
learning in robotics,” Frontiers in neurorobotics, vol. 13, p. 6, 2019.

[117] Y. Hu, J. Liu, A. Spielberg, J. B. Tenenbaum, W. T. Freeman, J. Wu, D. Rus, and
W. Matusik, “Chainqueen: A real-time differentiable physical simulator for soft robotics,”
in 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 6265–6271.

[118] J. Austin, R. Corrales-Fatou, S. Wyetzner, and H. Lipson, “Titan: A parallel asyn-
chronous library for multi-agent and soft-body robotics using nvidia cuda,” in 2020
IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020, pp.
7754–7760.

[119] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley, and F. Durand, “Diff-
taichi: Differentiable programming for physical simulation,” in International Conference
on Learning Representations (ICLR), 2020.

91

[120] E. Heiden, M. Macklin, Y. S. Narang, D. Fox, A. Garg, and F. Ramos, “DiSECt: A
Differentiable Simulation Engine for Autonomous Robotic Cutting,” in Proceedings of
Robotics: Science and Systems, Virtual, July 2021.

[121] P. Micikevicius, “3d finite difference computation on gpus using cuda,” in Proceedings
of 2nd workshop on general purpose processing on graphics processing units, 2009, pp.
79–84.

[122] D. Michéa and D. Komatitsch, “Accelerating a three-dimensional finite-difference wave
propagation code using gpu graphics cards,” Geophysical Journal International, vol. 182,
no. 1, pp. 389–402, 2010.

[123] R. Featherstone, “Exploiting sparsity in operational-space dynamics,” The International
Journal of Robotics Research, vol. 29, no. 10, pp. 1353–1368, 2010.

[124] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella, and D. G. Caldwell,
“Design of hyq - a hydraulically and electrically actuated quadruped robot,” IMechE
Part I: Journal of Systems and Control Engineering, vol. 225, no. 6, pp. 831–849, 2011.

[125] KUKA AG, “Lbr iiwa | kuka ag,” Accessed in 2020. [Online]. Available:
https://www.kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa

[126] Boston Dynamics, “Atlas,” Accessed in 2021. [Online]. Available: https://www.
bostondynamics.com/atlas

[127] R. Featherstone, “A divide-and-conquer articulated-body algorithm for parallel o (log
(n)) calculation of rigid-body dynamics. part 1: Basic algorithm,” The International
Journal of Robotics Research, vol. 18, no. 9, pp. 867–875, 1999.

[128] K. Yamane and Y. Nakamura, “Comparative Study on Serial and Parallel Forward
Dynamics Algorithms for Kinematic Chains,” The International Journal of Robotics
Research, vol. 28, no. 5, pp. 622–629, 2009.

[129] J. Brüdigam and Z. Manchester, “Linear-time variational integrators in maximal coordi-
nates,” 2020.

[130] J. Nganga and P. M. Wensing, “Accelerating second-order differential dynamic program-
ming for rigid-body systems,” IEEE Robotics and Automation Letters, 2021.

[131] S. Singh, R. P. Russell, and P. M. Wensing, “Efficient analytical derivatives of rigid-body
dynamics using spatial vector algebra,” 2021.

[132] S. Echeandia and P. M. Wensing, “Numerical methods to compute the coriolis matrix
and christoffel symbols for rigid-body systems,” Journal of Computational and Nonlinear
Dynamics, vol. 16, no. 9, 07 2021.

[133] W. Agboh, D. Ruprecht, and M. Dogar, “Combining coarse and fine physics for ma-
nipulation using parallel-in-time integration,” ISRR 2019 Springer Tracts in Advanced
Robotics, July 2019.

92

https://www.kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.bostondynamics.com/atlas
https://www.bostondynamics.com/atlas

[134] W. Agboh, O. Grainger, D. Ruprecht, and M. Dogar, “Parareal with a learned coarse
model for robotic manipulation,” Computing and Visualization in Science, vol. 23, no. 1,
pp. 1–10, 2020.

[135] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme, “NeuralSim:
Augmenting differentiable simulators with neural networks,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), 2021.

[136] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and feature-complete
differentiable physics engine for articulated rigid bodies with contact constraints,” in
Robotics: Science and Systems, 2021.

[137] R. Tedrake and the Drake Development Team, “Drake: A planning, control, and analysis
toolbox for nonlinear dynamical systems.” [Online]. Available: http://drake.mit.edu

[138] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” 2016.

[139] M. Giftthaler, M. Neunert, M. Stäuble, and J. Buchli, “The control toolbox — an
open-source c++ library for robotics, optimal and model predictive control,” 2018 IEEE
International Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR), pp. 123–129, 2018.

[140] J. H. Jung and D. P. O’Leary, “Cholesky decomposition and linear programming on a
gpu,” Scholarly Paper, University of Maryland, 2006.

[141] D. Yang, G. D. Peterson, and H. Li, “Compressed sensing and cholesky decomposition
on fpgas and gpus,” Parallel Computing, vol. 38, no. 8, pp. 421–437, 2012.

[142] I. E. Venetis, A. Kouris, A. Sobczyk, E. Gallopoulos, and A. H. Sameh, “A direct
tridiagonal solver based on givens rotations for gpu architectures,” Parallel Computing,
vol. 49, pp. 101–116, 2015.

[143] J. D. Hogg, E. Ovtchinnikov, and J. A. Scott, “A sparse symmetric indefinite direct
solver for gpu architectures,” ACM Transactions on Mathematical Software (TOMS),
vol. 42, no. 1, pp. 1–25, 2016.

[144] X. Hu, C. C. Douglas, R. Lumley, and M. Seo, “Gpu accelerated sequential quadratic
programming,” in 2017 16th International Symposium on Distributed Computing and
Applications to Business, Engineering and Science (DCABES). IEEE, 2017, pp. 3–6.

[145] S. N. Yeralan, T. A. Davis, W. M. Sid-Lakhdar, and S. Ranka, “Algorithm 980: Sparse
qr factorization on the gpu,” ACM Transactions on Mathematical Software (TOMS),
vol. 44, no. 2, pp. 1–29, 2017.

[146] H. Liu, J.-H. Seo, R. Mittal, and H. H. Huang, “Gpu-accelerated scalable solver for
banded linear systems,” in 2013 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2013, pp. 1–8.

[147] H. Anzt, M. Gates, J. Dongarra, M. Kreutzer, G. Wellein, and M. Köhler, “Preconditioned
krylov solvers on gpus,” Parallel Computing, 05 2017.

93

http://drake.mit.edu

[148] H. Anzt, M. Kreutzer, E. Ponce, G. D. Peterson, G. Wellein, and J. Dongarra, “Opti-
mization and performance evaluation of the idr iterative krylov solver on gpus,” The
International Journal of High Performance Computing Applications, vol. 32, no. 2, pp.
220–230, 2018.

[149] L.-W. Chang, J. A. Stratton, H.-S. Kim, and W.-M. W. Hwu, “A scalable, numerically
stable, high-performance tridiagonal solver using gpus,” in SC’12: Proceedings of the
International Conference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 2012, pp. 1–11.

[150] L.-W. Chang and W.-m. W. Hwu, A Guide for Implementing Tridiagonal Solvers on
GPUs. Springer International Publishing, 2014, pp. 29–44.

[151] A. P. Diéguez, M. Amor, and R. Doallo, “New tridiagonal systems solvers on gpu
architectures,” in 2015 IEEE 22nd International Conference on High Performance
Computing (HiPC). IEEE, 2015, pp. 85–94.

[152] A. Lamas Daviña and J. Roman, “Mpi-cuda parallel linear solvers for block-tridiagonal
matrices in the context of slepc’s eigensolvers,” Parallel computing, vol. 74, pp. 118–135,
2018.

[153] S. Heinrich, A. Zoufahl, and R. Rojas, “Real-time trajectory optimization under motion
uncertainty using a GPU,” in 2015 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2015, pp. 3572–3577.

[154] Q. Wu, F. Xiong, F. Wang, and Y. Xiong, “Parallel particle swarm optimization on
a graphics processing unit with application to trajectory optimization,” Engineering
Optimization, vol. 48, no. 10, pp. 1679–1692, 2016.

[155] P. Hyatt and M. D. Killpack, “Real-time evolutionary model predictive control using a
graphics processing unit,” in 2017 IEEE-RAS 17th International Conference on Humanoid
Robotics (Humanoids). IEEE, 2017, pp. 569–576.

[156] S. Ohyama and H. Date, “Parallelized nonlinear model predictive control on gpu,” in
2017 11th Asian Control Conference (ASCC). IEEE, 2017, pp. 1620–1625.

[157] K. M. M. Rathai, O. Sename, and M. Alamir, “Gpu-based parameterized nmpc scheme
for control of half car vehicle with semi-active suspension system,” IEEE Control Systems
Letters, vol. 3, no. 3, pp. 631–636, 2019.

[158] Y. Wang, X. Luo, F. Zhang, and S. Wang, “Gpu-based model predictive control for
continuous casting spray cooling control system using particle swarm optimization,”
Control Engineering Practice, vol. 84, pp. 349–364, 2019.

[159] P. Hyatt, C. S. Williams, and M. D. Killpack, “Parameterized and gpu-parallelized
real-time model predictive control for high degree of freedom robots,” arXiv preprint
arXiv:2001.04931, 2020.

[160] J. V. Frasch, M. Vukov, H. J. Ferreau, and M. Diehl, “A dual newton strategy for
the efficient solution of sparse quadratic programs arising in sqp-based nonlinear mpc,”
Optimization Online 3972, 2013.

94

[161] Y. Gang and L. Mingguang, “Acceleration of mpc using graphic processing unit,” in
Proceedings of 2012 2nd International Conference on Computer Science and Network
Technology. IEEE, 2012, pp. 1001–1004.

[162] N. F. Gade-Nielsen, J. B. Jørgensen, and B. Dammann, “Mpc toolbox with gpu accel-
erated optimization algorithms,” in 10th European workshop on advanced control and
diagnosis. Technical University of Denmark, 2012.

[163] Z. Pan, B. Ren, and D. Manocha, “Gpu-based contact-aware trajectory optimization using
a smooth force model,” in Proceedings of the 18th Annual ACM SIGGRAPH/Eurographics
Symposium on Computer Animation, ser. SCA ’19. New York, NY, USA: ACM, 2019,
pp. 4:1–4:12.

[164] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and H. Li, “On some new approximate
factorization methods for block tridiagonal matrices suitable for vector and parallel
processors,” Mathematics and Computers in Simulation, vol. 79, no. 7, pp. 2135–2147,
2009.

[165] H.-B. Li, T.-Z. Huang, Y. Zhang, X.-P. Liu, and T.-X. Gu, “Chebyshev-type methods
and preconditioning techniques,” Applied Mathematics and Computation, vol. 218, no. 2,
pp. 260–270, 2011.

[166] E. Rothberg and A. Gupta, “An efficient block-oriented approach to parallel sparse
cholesky factorization,” SIAM Journal on Scientific Computing, vol. 15, no. 6, pp.
1413–1439, 1994.

[167] J. Carpentier, “Analytical inverse of the joint space inertia matrix,” 2018.

[168] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org, 2010.

[169] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding,” in The International Conference
on Learning Representations (ICLR), 10 2016.

[170] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-
Lobato, G. Y. Wei, and D. Brooks, “Minerva: Enabling Low-Power, Highly-Accurate
Deep Neural Network Accelerators,” in 2016 ACM/IEEE 43rd Annual International
Symposium on Computer Architecture (ISCA), pp. 267–278.

[171] A. Finnerty and H. Ratigner, “Reduce power and cost by converting from floating point
to fixed point,” 2017.

[172] M. King, J. Hicks, and J. Ankcorn, “Software-driven hardware development,” in Proceed-
ings of the 2015 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2015, pp. 13–22.

[173] T. Feist, “Vivado design suite,” White Paper, vol. 5, p. 30, 2012.

[174] E. Fayneh, M. Yuffe, E. Knoll, M. Zelikson, M. Abozaed, Y. Talker, Z. Shmuely, and
S. A. Rahme, “14nm 6th-generation core processor soc with low power consumption
and improved performance,” in 2016 IEEE International Solid-State Circuits Conference
(ISSCC). IEEE, 2016, pp. 72–73.

95

Appendix A

Additional Rigid Body Dynamics

Algorithms and Refactorings

In this section we present the Recursive Newton Euler Algorithm (RNEA) and the direct

inverse of the mass matrix algorithm (M−1). We begin by presenting the standard algorithms

and then present the refactored algorithms that are optimized for GPU operation in the GRiD

library (Chapter 5).

We note that the direct M−1 algorithm is based off of the derivation by Carpentier [167]. In

it, πi refers to the frames of the subtree rooted at frame i. That is, frame i and all of its

descendants. For example, for the random robot in Figure 5.3, π2 = [2, 3], π1 = [1, 2, 3, 4] and

π6 = [6]. The notation [i, i :] refers to row i, columns i to n where n is the total number of

columns in that matrix. Finally, for q ∈ Rn then M−1 ∈ Rn×n and Fi ∈ R6×n.

96

Algorithm 8: RNEA(q, q̇, q̈, fext) → c

1: v0 = 0, a0 = gravity

2: for frame i = 1 : n do

3: Compute iXλi
, Si, Ii

4: vi =
iXλi

vλi
+ Siq̇i

5: ai =
iXλi

aλi
+ Siq̈i + vi × Siq̇i

6: fi = Iiai + vi ×∗ Iivi − f ext
i

7: for frame i = n : 1 do

8: ci = ST
i fi

9: fλi
+= iXT

λi
fi

Algorithm 9: M−1(q) → M−1

1: M−1, F = 0

2: for frame i = 1 : n do

3: Compute iXλi
, Si, Ii

4: for frame i = n : 1 do

5: Ui = IiSi

6: Di = ST
i Ui

7: M−1[i, i] = D−1
i

8: M−1[i, πi] −= D−1
i ST

i Fi[:, πi]

9: if λi ̸= 0 then

10: Fi[:, πi] += UiM
−1[i, πi]

11: Fλi
[:, πi] += iXT

λi
Fi[:, πi]

12: Iλi
+= iXT

λi

(
Ii − UiD

−1
i UT

i

)
iXλi

13: for frame i = 1 : n do

14: if λi ̸= 0 then

15: M−1[i, i :] −= D−1
i UT

i
iXλi

Fλi
[:, i :]

16: Fi[:, i :] = SiM
−1[i, i :]

17: if λi ̸= 0 then

18: Fi[:, i :] += iXλi
Fλi

[:, i :]

97

Algorithm 10: RNEA-GRiD(q, q̇, q̈, fext) → c

1: v0 = 0, a0 = gravity

2: for frame i = 1 : n in parallel do

3: Compute iXλi
, Si, Ii

4: αi = Siq̇i βi = Siq̈i

5: for level l = 0 : lmax do

6: for frame i ∈ l in parallel do

7: vi =
iXλi

vλi
+ αi

8: for frame i = 1 : n in parallel do

9: βi += vi × αi

10: for level l = 0 : lmax do

11: for frame i ∈ l in parallel do

12: ai =
iXλi

aλi
+ βi

13: for frame i = 1 : n in parallel do

14: γi = Iivi fi = Iiai − f ext
i

15: fi += vi ×∗ γi

16: for level l = lmax : 0 do

17: for frame i ∈ l in parallel do

18: fλi
+= iXT

λi
fi

19: for frame i = 1 : n in parallel do

20: ci = ST
i fi

98

Algorithm 11: M−1-GRiD(q) → M−1

1: M−1, F = 0

2: for frame i = 1 : n in parallel do

3: Compute iXλi
, Si, Ii

4: Ui = IiSi

5: Di = ST
i Ui

6: M−1[i, i] = D−1
i

7: αi = M−1[i, i]ST
i βi = M−1[i, i]UT

i

8: γi = Uiβi δi = βi
iXλi

9: for level l = lmax : 0 do

10: for frame i ∈ l in parallel do

11: M−1[i, πi] −= αiFi[:, πi]

12: if l > 0 then

13: Fi[:, πi] += UiM
−1[i, πi]

14: Fλi
[:, πi] += iXT

λi
Fi[:, πi] γi =

iXT
λi
(Ii − γi)

15: Iλi
+= γi

iXλi

16: for level l = 0 : lmax do

17: for frame i ∈ l in parallel do

18: if l > 0 then

19: M−1[i, i :] −= δiFλi
[:, i :]

20: Fi[:, i :] = SiM
−1[i, i :]

21: if l > 0 then

22: Fi[:, i :] += iXλi
Fλi

[:, i :]

99

Appendix B

CPU Optimized Dynamics

Gradients

Our optimized CPU implementation of the gradient of forward dynamics builds on the

algorithmic and implementation insights from existing state-of-the-art CPU libraries [100; 102;

103] and is further optimized for use with nonlinear model predictive control based on the

algorithmic features presented in Section 5.4.1.

In order to efficiently balance the coarse-grained parallelism exposed by tens to hundreds of

computations of the dynamics gradient across a handful of processor cores, each core must

work through several computations sequentially. In fact, in order to minimize performance

limiting context switches during thread execution, we limit the number of simultaneous threads

to the number of logical cores.

Efficient threading implementations can have a large impact on the final design. We designed

a custom threading wrapper to enable the reuse of persistent threads (see Appendix D) leading

to as much as a 1.9x reduction in end-to-end computation time as compared to continuously

launching and joining threads.

100

We also used the Eigen library [168] to vectorize many linear algebra operations, taking

advantage of some limited fine-grained parallelism by leveraging the CPU’s modest-width

vector operations.

The current fastest CPU forward dynamics package, RobCoGen, exploits structured sparsity

to increase performance [102; 103]. Building on this approach, we wrote custom functions

to exploit the structured sparsity in the dynamics gradient using explicit loop unrolling and

zero-skipping.

While this approach creates irregular data access patterns, this is not a problem for the CPU,

as the values are small enough to fit in the CPU’s cache hierarchy. The sequential dependencies

and small working sets are also handled well by the CPU’s fast clock rate, large pipeline, and

sophisticated memory hierarchy. With all operations occurring on the CPU, there is no I/O

overhead or partitioning of the algorithm across different hardware platforms.

Finally, we note that the Pinocchio Library [100] now supports optimized code-generation of

rigid body dynamics algorithms, and their gradients, superseding this implementation.

101

Appendix C

FGPA and ASIC Optimized Dynamics

Gradients

FPGAs have reconfigurable logic blocks and programmable interconnects that allow them to

implement custom hardware functional units, data flows, and processing pipelines. FPGA

designs often also use fixed-point arithmetic to perform math faster while using less energy

and area per computation as compared to floating-point arithmetic. The trade-off is that

the dynamic range and precision of fixed-point numbers are reduced. However, for many

applications, this reduction still produces high quality end-to-end solutions (e.g., quantization

for neural networks) [169; 170; 171].

To leverage this feature, we first validated that a fixed-point implementation of the dynamics

gradient kernel would provide sufficient end-to-end accuracy. We solved the Kuka manipulator

motion task from Section 4.4.1, sweeping the numerical data types used in the gradient

computation. As shown in Figure C.1, a wide range of fixed-point data types were able to

solve the problem successfully. We chose to use a 32-bit integer with 16 bits before and after

the decimal point. This is safely in the valid datatype range (as low as 12 bits before and 5

bits after), and integrates easily with the CPU’s 32-bit floating-point math.

102

Figure C.1: A range of fixed-point numerical types, highlighted in green, delivered comparable
numerical performance, converging to the same final trajectory cost as the baseline 32-bit floating-point
numerical datatype used in our CPU and GPU implementations, highlighted in grey. Types that resulted
in algorithms that did not converge to an equivalent solution are highlighted in Orange. The various
fixed-point types are labeled as “Fixed{integer bits, decimal bits}”.

Initial tests leveraging fixed-point conversion on the CPU incurred considerable overhead,

as such, we instead used dedicated Xilinx IP cores on the FPGA to compute the numerical

transformation, reducing overhead latency by as much as 3.6x.

We designed custom functional units and datapaths to exploit fine-grained parallelism. First,

we refactored the algorithm, as exemplified in Algorithm 12, to better map the computational

patterns to the FPGAs strengths. For example, we computed each column j of ∂c/∂uj

in parallel datapaths routed through the hardware and exploited parallelism between each

brief linear algebra operation, as well as within those operations, by instantiating many

multiplier and adder units in parallel. The FPGA can also fully exploit the fine-grained

parallelism between different linear algebra operations as all operations are performed natively

in independent, custom, parallel hardware circuits. For example, in Lines 3 and 6, cross products

and matrix-vector products are executed in parallel using different hardware circuits.

Coarse-grained parallelism, however, was limited in our design because we made a design

choice to prioritize reducing latency. This resulted in heavy utilization of limited digital

103

Algorithm 12: ∇RNEA-FPGA(q̇, v, a, f,X, S, I) → ∂c/∂u

1: for link i = 1 : N do

2: αi = Iivi

∂vi
∂u = iXλi

∂vλi
∂u +

iXλi

vλi
× Si u ≡ q

Si u ≡ q̇

3: βi =
∂vi
∂u ×

∗ αi γi = Ii
∂vi
∂u

∂ai
∂u = iXλi

∂aλi
∂u +

∂vλi
∂u × Siq̇i +

iXλi

aλi
× Si

vi × Si

4: ∂fi
∂u = Ii

∂ai
∂u + βi + vi ×∗ γi

5: for link i = N : 1 do

6: ∂ci
∂u = ST

i
∂fi
∂u δi =

iXT
λi

∂fi
∂u ζi =

iXT
λi
(Si ×∗ fi)

7:
∂fλi
∂u += δi + ζi

signal processing (DSP) resources on our FPGA platform, with 77.5% of the 6840 DSP blocks

used for a single computation in our final design. This is despite careful re-use or folding of

multiplier resources, which, e.g., reduced the resource requirements for the forward pass of our

implementation by about 7x.

Using the reconfigurable connections of the FPGA, we were able to exploit the sparse structure

of the X, ×, and ×∗ matrices by pruning operations from trees of multipliers and adders,

further decreasing latency. For example, when multiplying variables by the X matrices, we were

able to reduce some of the dot product operations from a 4-level tree with 6 multiplications

and 5 additions to a 3-level tree with 3 multiplications and 2 additions (see Figure C.2).

Implementing this sparsity in hardware datapaths not only decreases latency, but also helps

avoid irregular data access patterns by encoding them directly in the circuit routing.

By creating processing units tailored to the dataflow of the algorithm, our implementation also

streamlines sequential chains of dependencies between links by creating dedicated hardware to

iterate over those loops with minimal overhead. All of these reductions in overhead are crucial

to obtaining a performance advantage on an FPGA, as designs on the reconfigurable circuit

104

Figure C.2: An example of a tree of multipliers and adders for a dot product with a dense and known
sparse vector. The known sparse vector allows us to reduce a 4-level tree with 6 multiplications and 5
additions to a 3-level tree with 3 multiplications and 2 additions.

fabric typically have much slower clock speeds than CPUs and GPUs (e.g., 55.6MHz for our

design versus 1.7GHz and 3.6GHz for the GPU and CPU in Section 5.5.1).

Finally, we used a framework called Connectal [172] to implement the I/O transfer between the

FPGA and CPU. Connectal’s support for the FPGA platform we used is currently restricted

to PCIe Gen1, limiting our I/O bandwidth. However, by pipelining the I/O with the dynamics

gradient computations, we were able to achieve I/O overhead comparable to the GPU.

For our proof-of-concept ASIC, we ran synthesis based on our FPGA design using the Global

Foundries 12nm technology node at the typical process corner using the Vivado Design

Suite [173]. The maximum clock speed of the core computational pipeline on the ASIC is

7.2x faster than the clock speed of our FPGA implementation immediately accelerating all

computations by 7.2x as shown in Figure 7.1. While we did not tape-out a full system-on-chip,

our synthesized design had an area of 1.9 mm2, nearly 65× smaller than Intel’s 14 nm quad-core

SkyLake processor [174]. This suggests that many processing pipelines could be fit on a single

chip, allowing our ASIC to easily scale to multiple computations.

For more information on our proof-of-concept FPGA and ASIC implementations we suggest

reading our RA-L and ASPLOS papers [85; 86].

105

Appendix D

Reusable Threads

Efficient threading implementations can have a large impact on the final design. As mentioned

in Appendix B, good threading implementations can provide as much as a 1.9x speedup in

overall system performance.

In many applications that leverage trajectory optimization and rigid body dynamics algorithms,

the number of parallel computations is know at compile time. Furthermore, these parallel

computations each often repeatedly touch the same memory addresses. To improve cache

coherence and to reduce the overhead from launching and joining threads, we designed a

custom, header-only, ResuableThreads library to enable the easy construction of indexable

and synchronizeable persistent threads. This enables specific threads to be sent specific jobs

that touch specific areas of memory, repetitively. Our library combines the features of the

standard C++ thread library as well as the LLVM ThreadPool library and the C++ header

only ThreadPool library, which all provide a higher level and operating system agnostic

interface to the UNIX POSIX thread library.

To support the broader robotics research community, our ResuableThreads library is

publicly available at: https://github.com/plancherb1/ReusableThreads.

106

https://www.cplusplus.com/reference/thread/thread/
https://code.woboq.org/llvm/llvm/lib/Support/ThreadPool.cpp.html
https://github.com/PaulRitaldato1/ThreadPool
https://github.com/PaulRitaldato1/ThreadPool
https://man7.org/linux/man-pages/man7/pthreads.7.html
https://github.com/plancherb1/ReusableThreads

Finally, an example usage of our library’s C++ API is shown below:

// initialize

ReusableThreads<NUM_THREADS> threads;

// add a task where:

// thread_id is an integer in range(0,NUM_THREADS)

// function_ptr points to the desired task function

// varargs is a common seperated list of input arguments

threads.addTask(thread_id, function_ptr, varargs);

// wait until all threads finish their tasks

threads->sync();

107

	Title Page
	Copyright
	Abstract
	Contents
	List of Tables and Figures
	Acknowledgments and Dedication
	Introduction
	Model Predictive Control Background
	Model Predictive Control (MPC)
	Trajectory Optimization
	Differential Dynamic Programming (DDP)
	Direct Trajectory Optimization
	Merit Functions
	Schur Complement Direct Trajectory Optimization
	Krylov Subspace Methods
	Parallel Preconditioners

	Computer Hardware Background
	The Need for Parallelism
	Multi-Core CPU
	Graphics Processing Unit (GPU)
	Hardware-Software Co-Design

	MPC with GPU Accelerated DDP
	Related Work
	Parallelizing DDP
	Instruction-Level Parallelization
	Algorithm-Level Parallelization
	The Parallel DDP Algorithm
	Implementation Details

	Exploring the Benefits and Limitations of Parallelism
	Quadrotor
	Manipulator

	Whole-body, Nonlinear MPC Experiments
	Simulation Experiments
	Hardware Experiments

	Conclusion and Future Work

	GRiD: GPU Accelerated Rigid Body Dynamics with Analytical Gradients
	Related Work
	Rigid Body Dynamics Background
	The GRiD Library
	GRiD's Design and Optimizations
	Key Features of Rigid Body Dynamics Algorithms
	Mapping Rigid Body Dynamics Algorithms to the GPU

	Benchmark Timing Results
	Proof-Of-Concept Evaluations
	GRiD Benchmark Evaluations

	Conclusion and Future Work

	Towards MPC with GPU Accelerated Direct Trajectory Optimization
	Related Work
	GPU-Accelerated Direct Trajectory Optimization
	A Structure Exploiting PCG Solver for the GPU
	A Parallel Block-Tridiagonal Preconditioner
	Optimizing for the Trajectory Optimization Problem
	The Overall Algorithm

	Preliminary Experiments
	Proof-Of-Concept Parallel Preconditioner Evaluation
	Proof-Of-Concept Nonlinear MPC Evaluation

	Conclusion and Future Work

	Conclusion and Future Work
	Hardware Acceleration Beyond the GPU

	References
	Appendix Additional Rigid Body Dynamics Algorithms and Refactorings
	Appendix CPU Optimized Dynamics Gradients
	Appendix FGPA and ASIC Optimized Dynamics Gradients
	Appendix Reusable Threads

