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Disclaimer

There are many online resources
for learning about Machine
Learning -- we will try to
summarize the key points that
you need to understand to dive into
TinyML in the next two classes.

Some helpful resources for further

study (and inspiration for lecture):

The Machine Learning for Humans Blog

The Machine Learning is Fun Blog

The Machine Learning Glossary

Justin Markham's SciKitLearn Course

Andrew Ng's ML Coursera Course

Google's ML Crash Course
CalTech’s ML Video Library
MIT’s Intro to Deep Learning

The History of Deep Learning



https://medium.com/machine-learning-for-humans/supervised-learning-740383a2feab
https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471#.jv43ued0p
https://ml-cheatsheet.readthedocs.io/en/latest/
https://github.com/justmarkham/scikit-learn-videos
https://www.coursera.org/learn/machine-learning
https://developers.google.com/machine-learning/crash-course
http://work.caltech.edu/library/index.html
https://www.youtube.com/watch?v=njKP3FqW3Sk
https://arxiv.org/pdf/1803.01164.pdf

What is Machine Learning?




What is (Deep)
Machine Learning?

1. Machine Learning is a subfield
of Artificial Intelligence focused
on developing algorithms that
learn to solve problems by
analyzing data for patterns
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What is (Deep)
Machine Learning?

1. Machine Learning is a subfield
of Artificial Intelligence focused
on developing algorithms that
learn to solve problems by
analyzing data for patterns

2. Deep Learningis a type of
Machine Learning that leverages
Neural Networks and Big Data

Artificial
Intelligence

Machine
Learning
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(A) ML Taxonomy

The big difference is
what kind of data you
have to learn from!

Machine
Learning

Reinforcement Unsupervised Supervised
Learning Learning Learning

Need to interact Unlabeled Data Labeled Data
with environment (e.g., raw images) (e.g., images with
captions)



(A) ML Taxonomy

Machine
Learning

Reinforcement Unsupervised
Learning Learning

Unlabeled Data
(e.g., raw images)

Need to interact
with environment

This will be the focus
of this course!

Supervised
Learning

Labeled Data
(e.g., images with
captions)
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(A) ML Taxonomy

Machine
Learning

Reinforcement Unsupervised

Learning

Learning

Genetic Algorithms
Value Iteration
Q-Learning
DQN

SARSA
A3C

K-Means Mean-Shift

Auto-Encoders
GANs

PCA

Supervised
Learning

SvD K-NN SVM

Logistic Regression

Linear Regression
Polynomial Regression
Ridge/Lasso Regression

MLPs CNNs RNNs



Reinforcement Learning
with Value Iteration

Reinforcement Learning is used
when there is no data BUT an agent
can interact with an environment
(through actions resulting in new
states) and after a series of actions

Reward

the agent receives a reward. This is
a common model used in Robotics.

https://towardsdatascience.com/a-beginners-quide-to-g-learning-c3e2a30a653c

States

Agent

Environment

Actions


https://towardsdatascience.com/a-beginners-guide-to-q-learning-c3e2a30a653c

Reinforcement Learning
with Value Iteration

Value Iteration builds a recursive
brute force estimate of the value
of being in each gridded world state

http://ai.berkeley.edu/home.html
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Reinforcement Learning
with Value Iteration

Value Iteration builds a recursive
brute force estimate of the value
of being in each gridded world state

VALUES AFTER 3 ITERATIONS
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Reinforcement Learning
with Value Iteration

Value Iteration builds a recursive
brute force estimate of the value
of being in each gridded world state

VALUES AFTER 10 ITERATIONS

http://ai.berkeley.edu/home.html


http://ai.berkeley.edu/home.html

(A) ML Taxonomy

Machine
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Reinforcement
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Value Iteration
Q-Learning
DQN

SARSA
A3C

K-Means Mean-Shift
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GANs
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Learning

PCA

Supervised
Learning
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Ridge/Lasso Regression
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Reinforcement Learning
with DQN

We can take this a step further and

generalize things more by using a T

neural network to map images

directly to actions

Q Learning

More on this later!

Deep Q Learning

https://blogs.oracle.com/datascience/reinforcement-learning-deep-g-networks



https://blogs.oracle.com/datascience/reinforcement-learning-deep-q-networks

Reinforcement Learning
with DQN

https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html


https://ai.googleblog.com/2018/06/scalable-deep-reinforcement-learning.html
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(A) ML Taxonomy

Reinforcement
Learning

Genetic Algorithms

Value lteration
Q-Learning
DQN

Machine
Learning
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Learning Learning

SARSA
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Unsupervised Learning
Clustering with Mean Shift

Unsupervised Learning takes in
unlabeled data and tries to
determine some kind of
relationships present in the data



Unsupervised Learning
Clustering with Mean Shift

Unsupervised Learning takes in
unlabeled data and tries to
determine some kind of
relationships present in the data

The mean shift algorithm finds

clusters of data by spatially
averaging values across an image to
determine clusters




Unsupervised Learning
Clustering with Mean Shift







(A) ML Taxonomy

Reinforcement
Learning

Genetic Algorithms

Value Iteration
Q-Learning
DQN

Unsupervised Supervised
Learning Learning
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MLPs CNNs RNNs



Unsupervised Learning
Autoencoders

Autoencoders are Neural Networks

with a bottleneck in the middle ¢

which is used to get a latent (lower _\ /P
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https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726

Unsupervised Learning
Autoencoders

Compressed Data

Encode Decode



https://towardsdatascience.com/auto-encoder-what-is-it-and-what-is-it-used-for-part-1-3e5c6f017726

(A) ML Taxonomy
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of this course!
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Supervised Learning

Classification is when the output Supervised
Learning

is designed to be used as a class

(e.g., which animal is in a picture).

Linear Regression K-NN SVM
Polynomial Regression Logistic Regression
Ridge/Lasso Regression

MLPs CNNs RNNs



Supervised Learning

Classification is when the output
is designed to be used as a class
(e.g., which animal is in a picture).

Regression is when the output is
designed to be used as a value
(e.g., the percentage of the vote a
candidate will receive)

Supervised
Learning

Linear Regression K-NN SVM
Polynomial Regression Logistic Regression
Ridge/Lasso Regression

MLPs CNNs RNNs



Supervised Learning

Classification is when the output
is designed to be used as a class
(e.g., which animal is in a picture).

Regression is when the output is
designed to be used as a value
(e.g., the percentage of the vote a
candidate will receive)

Supervised
Learning

Linear Regression K-NN SVM
Polynomial Regression Logistic Regression
Ridge/Lasso Regression

MLPs CNNs RNNs



Classical Supervised Learning:
Regression




Regression

Regression is a method of
supervised learning which uses
labeled data (Z, 1) to learn a
parameterized model:

fo(z) = 9



Regression

Regression is a method of
supervised learning which uses
labeled data (Z, 1) to learn a
parameterized model:

fo(z) = 9

Let’s start by exploring
Linear Regression

2D



Linear Regression
Data

10}




Linear Regression
Data

Model

Jo:9 =0z + 0

Slope Intercept
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Linear Regression
Data

Model
fo:9 =01z + 6
2 ) 2 )

Slope Intercept

Error
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Optimizing the
Model

The model’s parameters can be

optimized through the use of a
loss function:

ming £(€)
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Optimizing the
Model

The model’s parameters can be

optimized through the use of a
loss function:

ming £(€)

A common loss function is the
Mean Squared Error (MSE)

ming Y1, (e;)’

Lets walk through
an example of

optimizing a model
using MSE for some
example data!
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First let’'s take an
initial guess!
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Gradient Descent

<0 —-aVMSE

It turns out that if one moves in
direction of the negative gradient
according to some step size
(learning rate) you will move
toward the optimum

theta 0




Gradient Descent

0+ 60— aVMSE T

It turns out that if one moves in
direction of the negative gradient
according to some step size
(learning rate) you will move
toward the optimum -

Global Minimum
( Best One)

» Local

—

Minimum

https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/


https://www.mltut.com/stochastic-gradient-descent-a-super-easy-complete-guide/

Gradient Descent

< 0—-aVMSE

It turns out that if one moves in
direction of the negative gradient
according to some step size
(learning rate) you will move
toward the optimum

https://arxiv.org/pdf/1712.09913.pdf
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Gradient Descent
0<— 60— aVMSE




Gradient Descent
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The Learning Rate is
a hyperparameter
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e Setittoolow and it will
take forever and get
stuck in local minima

e Setittoo high and it will
diverge



The Learning Rate is

d
< 0—-—aVMSE
000 | ,':diverging Set it and it will

3500 - f ;' and
¥ in local minima
too slow

pd * , Cat it anA it asill
If you want to explore this example further | made an iPython

notebook: bit.ly/CS249-F20-LinReg
And found this other notebook: http://bit.ly/CS249-F20-LinReg2



http://bit.ly/CS249-F20-LinReg
http://bit.ly/CS249-F20-LinReg2

Beyond Linear
Regression

e Our model can be any
function of the input

fo(z) = 9

https://xkcd.com/2048/

N Ak
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https://xkcd.com/2048/

Beyond Linear
Regression

e Our model can be any
function of the input

e More complex functions:
o fit more complex data

fo(z) = 7

https://xkcd.com/2048/

UINEAR



https://xkcd.com/2048/

Beyond Linear
Regression

e Our model can be any
function of the input

e More complex functions:
o fit more complex data
o can overfit data

https://xkcd.com/2048/



https://xkcd.com/2048/

Beyond Linear
Regression

e Our model can be any
function of the input

e More complex functions:
o fit more complex data
o can overfit data

Separate out data sets

for training and testing
to check for overfitting!

https://xkcd.com/2048/

Loss

Legend

Tesung
Trammg

Stop training
here!

—— '_’

Training lterations


https://xkcd.com/2048/

Regularization to
avoid overfitting

e One simple way to reduce
overfitting is to penalize the
model for reacting strongly
to the data e.g.,

ming 3= ()’

https://www.youtube.com/watch?v=Q81RR3yKn30
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Regularization to
avoid overfitting

e One simple way to reduce
overfitting is to penalize the
model for reacting strongly
to the data e.g.,

ming 3 ()’

https://www.youtube.com/watch?v=Q81RR3yKn30
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Regularization to
avoid overfitting

e One simple way to reduce
overfitting is to penalize the
model for reacting strongly
to the data e.g.,

ming 1Y (e:)”+ 6]

https://www.youtube.com/watch?v=Q81RR3yKn30
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Regression

Regression is a method of
supervised learning which uses
labeled data (Z, 1) to learn a
parameterized model:

fo(z) = 9

Models are often optimized
through gradient descent on
some loss function (e.g., MSE)

Hyperparameters like the
learning rate need to be tuned
to have this converge well

Regularization and separate
test data can help avoid the
problem of overfitting



Supervised Learning

Classification is when the output
is designed to be used as a class
(e.g., which animal is in a picture).

Regression is when the output is
designed to be used as a value
(e.g., the percentage of the vote a
candidate will receive)

Supervised
Learning

Classifica-
tion

Linear Regression K-NN SVM
Polynomial Regression Logistic Regression
Ridge/Lasso Regression

MLPs CNNs RNNs



Classical Supervised Learning:
Classification




Regression

Regression is a method of
supervised learning which uses
labeled data (Z, 1) to learn a
parameterized model:

fo(z) = 9



Classification

Classification is a method of
supervised learning which uses
labeled data (Z, 1) to learn a
parameterized model:

fo(z) = 7
where the output is a discrete
class (integer)



Classification

Logistic Regression

Classification is a method of
supervised learning which uses
labeled data (Z, 1) to learn a
parameterized model:

Uses the same regression
machinery plus a nonlinear
activation function that maps
f@ (CIZ) N g the OUtPL.jt into pr.'ob?bility space
(probability of being in a class)
where the output is a discrete

class (integer)



Classification

Logistic Regression

Classification is a method of
supervised learning which uses Uses the same regression

labeled data (567 y) tolearn a machinery plus a nonlinear

parameterized model: activation function that maps

> the output into probability space
fo(z) — @ Putinio probebIity sp
(probability of being in a class)
where the output is a discrete and then a decision boundary to
class (integer) decide at what probability

something is of a class



E.g., the Sigmoid
Activation Function

Logistic Regression

Uses the same regression
machinery plus a nonlinear
activation function that maps
the output into probability space
(probability of being in a class)
and then a decision boundary to
decide at what probability
something is of a class



E.g., the Sigmoid
Activation Function
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Logistic Regression

Uses the same regression
machinery plus a nonlinear
activation function that maps
the output into probability space
(probability of being in a class)
and then a decision boundary to
decide at what probability
something is of a class



Logistic Regression

We also need a new loss function
which can better penalize this
particular output and can penalize
increasingly more for being more
sure and wrong



The Cross Entropy
Loss Function

£(xi, yi=1) = — log(hg(z:))
U(z;, Yyi—o) = —log(1 — he(z;))

N Log Loss when true label = 1
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predicted probability

Logistic Regression

We also need a new loss function
which can better penalize this
particular output and can penalize
increasingly more for being more
sure and wrong
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Putting it all together
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_ogistic Regression:

Putting it all together
_inear Regression
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_ogistic Regression:

Putting it all together
_inear Regression + Sigmoid
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_ogistic Regression:

Putting it all together
_inear Regression + Sigmoid + Decision Boundary
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_ogistic Regression:

Putting it all together
_inear Regression + Sigmoid + Decision Boundary
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If you want to explore this example further | found an iPython

notebook: bit.ly/CS249-F20-LogitReg


http://bit.ly/CS249-F20-LinReg

Classification

Classification is a method of
supervised learning which uses
labeled data (Z, 1) to learn a
parameterized model:

fo(z) = 7
where the output is a discrete
class (integer)

We can still optimize via
gradient descent we just need
new loss functions

We now need a nonlinear
activation function to help
map us into probability space

We then need a decision
boundary



Quick Summary:
e Al>ML > Deep Learning
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Quick Summary:

e Al>ML > Deep Learning
e Different methods of learning

are defined by their data
e We will focus on (Deep)
Supervised Learning in CS249r

Machine
Learning

Reinforcement
Learning

Need to
interact
with
environme
nt

Unsupervised
Learning

Supervised

Unlabeled Learning

Data

Labeled
Data



Quick Summary:

e Al>ML > Deep Learning

e Different methods of learning are defined by their
data. We will focus on (Deep) Supervised Learning
in CS249r

e Classification and Regression
rely on a model with
parameters, loss and
activation functions,
hyperparameters (learning
rate) and gradient descent

e Consider overfitting and
regularization/test data

theta 0




Classical Machine Learning:
Computer Vision




Computer Vision is all about
Regression and Classification

.
pe
-

Object Detection

Optical Flow

https://developer.nvidia.com/blog/an-introduction-to-the-nvidia-optical-flow-sdk/
https://medium.com/@rishi30.mehta/object-detection-with-yolo-giving-eyes-to-ai-7a3076c6977e



https://developer.nvidia.com/blog/an-introduction-to-the-nvidia-optical-flow-sdk/
https://medium.com/@rishi30.mehta/object-detection-with-yolo-giving-eyes-to-ai-7a3076c6977e

Computer Vision is HARD!
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Slide Credit: Hamilton Chong
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Computer Vision is HARD!

What color is the shirt? the pants?

So how might we go about doing computer
vision and why might we want to use TinyML?

Slide Credit: Hamilton Chong



Motivating Example:
Stopping lllegal Fishing

e Satellites can track vessels that
aren’t broadcasting transponders
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Motivating Example:
Stopping lllegal Fishing

e Satellites can track vessels that
aren’t broadcasting transponders

e We have two options
a. Launch a few expensive
satellites that do a good job
covering small areas
b. Launch many cheap satellites
that don't do a good job
covering large areas

\

What if we could detect
images that had boats
in them using TinyML
onboard and only send
those images?




Motivating Example:
Stopping lllegal Fishing

S
DigitalGlobe |

How can we detect that
a boat is in an image?

https://arstechnica.com/tech-policy/2017/02/to-catch-a-thief-with-satellite-data/



https://arstechnica.com/tech-policy/2017/02/to-catch-a-thief-with-satellite-data/

Motivating Example:
Stopping lllegal Fishing

How can we detect that
a boat is in an image?

Look for an EDGE!

https://arstechnica.com/tech-policy/2017/02/to-catch-a-thief-with-satellite-data/
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Edge Detection
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Edge Detection
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Edge Detection

Discontinuity = Edge!

Derivative

[ ]
Slide Credit: Todd Zickler CS 283 f IS Iarge




Edge Detection

But this data is very noisy
. LT

1o S o
/

Discontinuity = Edge!

VRIS
2 )

Derivative
is large

Slide Credit: Todd Zickler CS 283
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Spatial Local Averaging
Reduces Noise!
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F WY )

R "{1 , Remember
i£ ) Mean Shift?
b \ - -.

We can do
something
similar in spirit
here!

No smoothing ' g=2

Slide Credit: Todd Zickler CS 283



Traditional CV does this through
Convolutions of Linear Filters

Filter

Repeated overlapping
[\ application...

Input

Feature Map |
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Traditional CV does this through
Convolutions of Linear Filters
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Traditional CV does this through
Convolutions of Linear Filters

4 A

Smoothing is a
pre-processing
stage that is
critical for finding
good edges!

\_ /

Slide Credit: Todd Zickler CS 283




Motivating Example:
Stopping lllegal Fishing

There is a
discontinuity
in the image!

How can we detect that
a boat is in an image?

Look for an EDGE!

https://arstechnica.com/tech-policy/2017/02/to-catch-a-thief-with-satellite-data/
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Motivating Example:



https://arstechnica.com/tech-policy/2017/02/to-catch-a-thief-with-satellite-data/

But what features should we use
for ?

person

chair

ImageNet
Challenge: 1.2
million

items

11F)CT'SOF'I

helmet
helmet

motorcycle

Slide Credit: ImageNet
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The Rise of Deep Learning:
AlexNet
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Deep vs Classical Learning
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Traditional Machine Learning Flow
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AlexNet

The filters
learned by the
NN for the initial
convolution layer

look like standard
CV filters!
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AlexNet

Smoothed edge
tection filt
The filters detection filter
learned by the
NN for the initial

convolution layer
look like standard
CV filters!
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Supervised (tiny) Deep
Learning 101




Neural Networks a
model of the brain!
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Node of
Ranvier

Cell body

Schwann cell

Myelin sheath
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https://towardsdatascience.com/perceptron-explanation-implementation-and-a
-visual-example-3c8e76b4e2d1
https://machinelearningmastery.com/neural-networks-crash-course/
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Neural Networks a
model of the brain!

Dendrite

Axon Terminal

Node of
Ranvier °

4 cell body

Schwann cell

Myelin sheath
Nucleus

https://towardsdatascience.com/perceptron-explanation-implementation-and-a

-visual-example-3c8e76b4e2d1
https://machinelearningmastery.com/neural-networks-crash-course/
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Outputs

Inputs

Activation

Weights

Parameters

Perceptron Model
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Neural Networks a

model of the brain!
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Neural Networks a
model of the brain!

1 Linear combination
Output of inputs

UL =0—0—¢ l -
xz»..,/ 9=9(Wo+z X Wi)
ﬁm I /f \l-

Wi
Non-linear Bias
activation function

Inputs  Weights Sum  Non-Linearity Output

https://www.youtube.com/watch?v=njKP3FqW3Sk L. i L. .
This is just like logistic regression


https://www.youtube.com/watch?v=njKP3FqW3Sk

Nonlinearities and
Depth for Generality

Output Layer

[Hidden Layer]

Input Layer

https://arxiv.org/pdf/1512.03965.pdf


https://arxiv.org/pdf/1512.03965.pdf

Nonlinearities and
Depth for Generality

“It is well-known that sufficiently Output Layer
large depth-2 neural networks,
using reasonable activation

functions, can approximate any [Hidden Layer ]
continuous function on a bounded

domain”

Input Layer

https://arxiv.org/pdf/1512.03965.pdf
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Quick Summary:

e Al>ML > Deep Learning
e Different methods of learning

are defined by their data
e We will focus on (Deep)
Supervised Learning in CS249r
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Quick Recap:

e Al>ML > Deep Learning

e Different methods of learning are defined by their
data. We will focus on (Deep) Supervised Learning
in CS249r

e Classification and Regression
rely on a model with
parameters, loss and
activation functions,
hyperparameters (learning
rate) and gradient descent

e Consider overfitting and
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Classification and Regression rely on a model
with parameters, loss and activation functions,
hyperparameters (learning rate) and gradient
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Deep Learning automates the designs and
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Quick Summary:

Al > ML > Deep Learning

Different methods of learning are defined by their
data. We will focus on (Deep) Supervised Learning
in CS249r

Classification and Regression rely on a model
with parameters, loss and activation functions,
hyperparameters (learning rate) and gradient
descent

Consider overfitting and regularization

Computer vision pre-processes data and finds
features through convolutions

Deep Learning automates the designs and
interactions of features by constructing deep
networks of nonlinearly activated, connected neurons
Convolutions are a key way of finding spatial
features in data

-
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Next Class: (tiny)
Deep Learning
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Quick Recap:

e Al>ML > Deep Learning

e Different methods of learning are defined by their
data. We will focus on (Deep) Supervised Learning
in CS249r

e Classification and Regression rely on a model
with parameters, loss and activation functions,
hyperparameters and gradient descent

e Consider overfitting and regularization

e Data needs to be pre-processed

e Spatial features can be found
through convolutions

Filter

Input

Feature Map

Repeated overlapping
application...
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data. We will focus on (Deep) Supervised Learning
in CS249r

e Classification and Regression rely on a model
with parameters, loss and activation functions,
hyperparameters and gradient descent
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e  Spatial features can be found through
convolutions

e Deep Learning automates the designs and
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The Rise of Deep Learning:
AlexNet
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AlexNet Model Design

The filters
learned by the
NN for the initial
convolution layer

look like standard
CV filters!
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AlexNet Model Design

Smoothed edge
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AlexNet Model Design

RelU activation function to avoid
Saturation and Vanishing Gradients
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https://towardsdatascience.com/complete-guide-of-activation-functions-34076e95d044
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AlexNet Training

( )
Dropout, and Data Augmentation, to avoid overfitting

\. J

( ) 4 )
Batch Updates for stability Multi-GPU for speed

. J . J
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(b) After applying dropout.

a) Standard Neural Net
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Data Augmentation



https://nanonets.com/blog/data-augmentation-how-to-use-deep-learning-when-you-have-limited-data-part-2/

AlexNet Training

( )
Dropout, and Data Augmentation, to avoid overfitting
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Batch Updates for stability Multi-GPU for speed
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Stochastic Gradient Descent

We want to update the
model parameters based

on the training data -- we
use (stochastic) gradient
descent!




Quick Aside
Stochastic Gradient Descent

We want to update the
model parameters based

on the training data -- we
use (stochastic) gradient
descent!

Instead of computing the
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the data we use (one)
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Quick Aside

We want to update the
model parameters based

on the training data -- we
use gradient
descent!

Instead of computing the
gradient based on all of
the data we use

of data

The full gradient is:
O( loutputs| lweights| |datal )

E.g., visual wake words has a
40GB dataset...

So thisis MUCH CHEAPER
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Quick Aside
Stochastic Gradient Descent

Pros

50

e Computationally cheap
and doesn’t require full
data for an update

40

30

20

Cons

Consecutive Goals Achieved

e Makes myopic / noisy
updates which often
requires a small learning
rate requiring many
iterations

® All Randomizations

10 100
Years of Experience

@ No Randomizations

https://lopenai.com/blog/learning-dexterity/


https://openai.com/blog/learning-dexterity/

Quick Aside
Stochastic Gradient Descent

Pros

Computationally cheap
and doesn’t require full
data for an update

Cons

Makes myopic / noisy
updates which often
requires a small learning
rate requiring many
iterations

Consecutive Goals Achieved

40

30

20

Even training our SUPER SMALL
models will take hours if not days! |

LT

1 10 100
Years of Experience

® All Randomizations @® No Randomizations

https://lopenai.com/blog/learning-dexterity/


https://openai.com/blog/learning-dexterity/

Quick Aside

Even training our SUPER SMALL
3 models will take hours if not days!

So how might we

speed up
training?

https://openai.com/blog/learning-dexterity/



https://openai.com/blog/learning-dexterity/

Momentum to accelerate
Stochastic Gradient Descent

v+ (1—79)V
0« 0—av

= &

) SGD without momentum ) SGD with momentum

https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning



https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning

Momentum to accelerate
Stochastic Gradient Descent

v )T (1 o 7) V There are a ton of ways to do this:

https://ruder.io/optimizing-gradient- descent/

o &

) SGD without momentum ) SGD with momentum

https://www.slideshare.net/SebastianRuder/optimization-for-deep-learnin



https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://ruder.io/optimizing-gradient-descent/

Momentum to accelerate
Stochastic Gradient Descent

There are a ton of ways to do this:
https://ruder.io/optimizing-gradient- descent/

The best ones use an
adaptive learning rate

(a) SGD without momentum (b) SGD with momentum

https://www.slideshare.net/SebastianRuder/optimization-for-deep-learnin



https://www.slideshare.net/SebastianRuder/optimization-for-deep-learning
https://ruder.io/optimizing-gradient-descent/

Momentum to accelerate
Stochastic Gradient Descent

10% MNIST N!ultilayer Neu'ral Network +'dropout
\ | Z Rsre There are a ton of ways to do this:
— SGDNesterov https://ruder.io/optimizing-gradient- descent/
AdaDelta
Adam
) The best ones use an
: adaptive learning rate
E
O Bussopsesismupississ ietnsmsusiisesiapnsnsdr il
0 5:0 l(i)O 1;0 200

iterations over entire dataset

https://arxiv.org/pdf/1412.6980.pdf


https://arxiv.org/pdf/1412.6980.pdf
https://ruder.io/optimizing-gradient-descent/

to accelerate

Stochastic Gradient Descent

10" MNIST Multilayer Neural Network + dropout
f ! ! !
&\ : — AdaGrad
\‘,\\\ RMSProp
\\Y ; — SGDNesterov
W AdaDelta
M 5‘*. , Adam
W H‘\“N
\’(}’\ Al A @
WM My WM Y
4 YV Vi) AU
S W W k\")\\{\ W \-”f\/}“/w
o A" 2 ”fw "L\, Y
€ ',\"-v\\,\ : L/ /V Na', M{" U’\\f /M vlv
£ k J\t\ /“ /\\w
\V\\ 3 ff\
102k o VV\“&MJ\)\A A
i (\\\{‘”v“vwv \
5 V\ \[\/\\'\\'
0 510 100 150 200

iterations over entire dataset

https://arxiv.org/pdf/1412.6980.pdf

There are a ton of ways to do this:
https://ruder.io/optimizing-gradient- descent/

The best ones use an

But the best optimizer

for a given NN is still an
open problem!



https://arxiv.org/pdf/1412.6980.pdf
https://ruder.io/optimizing-gradient-descent/

(Mini) Batch Updates using
Stochastic Gradient Descent

38 & Stochastic

3.6F| —— Mini-batch
3.4} | ==e Batch

5 32} Batch size is
1 another
e hyperparameter
2.8} we can tune
2.6
2.4}
2.5

https://stats.stackexchange.com/guestions/153531/what-is-batch-size-in-neural-network



https://stats.stackexchange.com/questions/153531/what-is-batch-size-in-neural-network

Multi-GPU Training

AlexNet COULD NOT FIT INTO 3GB of RAM!!!!

Today lots of data-parallel training




AlexNet
Deep Learning Insights

e Providing a structured model allows a computer
to effectively learn (e.g., convolutions)
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e There are a handful of practical activation
functions - ReLU has become quite popular



AlexNet

Deep Learning Insights

e  Providing a structured model allows a computer to effectively learn (e.g.,

convolutions)

e There are a handful of practical activation functions - ReLU has become

quite popular

e Efficient learning requires regularization

(e.g., Dropout, Data Augmentation)
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(b) After applying dropout.



AlexNet
Deep Learning Insights

e  Providing a structured model allows a computer to effectively learn (e.g.,

convolutions)

e There are a handful of practical activation functions - ReLU has become
quite popular

e Efficient learning requires regularization (e.g., Dropout, Data
Augmentation, and Weight Decay)

e Batch Updates and Adaptive Learning Rates
(often based on momentum) provide fast
convergence with stability to Stochastic
Gradient Descent

training cost

MNIST Multilayer Neural Network + dropout

— AdaGrad

—— RMSProp
— SGDNesterov
AdaDelta

50

i i
100 150
iterations over entire dataset

200



Deep Learning in Practice




Deep Supervised Learning

1. Collect
Preprocess and design
Train

Evaluate

a kM w N

Deploy



Deep Supervised Learning

— | Training

Documents,

Images,
etc.

Labels

]
]

1. Collect LOTS
of data!
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Deep Supervised Learning

— | Training

Documents,

Images,
etc. A

Labels

]
]

Performance

Collect LOTS
of data!

Large Neural Network

Small Neural Network

Traditional
Machine Learning

\ 4

Data



Deep Supervised Learning

1.

Training

Documents,
Images,
etc.

Collect LOTS
of UNBIASED
data!

Predicted Age

100

--- Perfect Accuracy
— Prediction using Wikipedia

Prediction on Wikipedia Dataset

100


https://towardsdatascience.com/bias-in-machine-learning-how-facial-recognition-models-show-signs-of-racism-sexism-and-ageism-32549e2c972d

Deep Supervised Learning

- Training . . . .
Text, Error Rates in Commercial Gender Classification Products
Documents,
Images,
= B [=TED
J
J Dark Skinned Female 20.8% 34.5%
Labels
T ] Light Skinned Female 1.7% 6.0%
1 o COI |eCt LOTS Dark Skinned Male 6.0% 0.7%
of UNBIASED
data! Light Skinned Male 00% 0.8%

http://proceedings.mir.press/v81/buolamwini18a/buolamwini18a.pdf
https://towardsdatascience.com/bias-in-machine-learning-how-facial-recognition-models-show-signs-of-racism-sexism-and-ageism-32549e2¢972d

I
T

g
E

7.1%

12.0%

0.3%


http://proceedings.mlr.press/v81/buolamwini18a/buolamwini18a.pdf
https://towardsdatascience.com/bias-in-machine-learning-how-facial-recognition-models-show-signs-of-racism-sexism-and-ageism-32549e2c972d

Deep Supervised Learning

Feature

f Py E> Vectors
etc.

2. Preprocess the data and
design your Machine
Learning model



Deep Supervised Learning

‘viii‘;?;' ® (leaning and organizing data: 60%

® (ollecting data sets; 19%

2. Preprocess the data and
design your Machine
Learning model

https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower DataScienceReport 2016.pdf



https://visit.figure-eight.com/rs/416-ZBE-142/images/CrowdFlower_DataScienceReport_2016.pdf

Deep Supervised Learning

Training
Text,
Documents,
Images,
etc.

1

2. Preprocess the data and
design your Machine

)

—

Learning model

Feature
Vectors

/ N\
./ Machine \‘.
: Learning }
\ Algorithm /

seconds

//’ \ dBs

3 y

https://towardsdatascience.com/beginners-quide-to-speech-analysis-4690ca7a7c05



https://towardsdatascience.com/beginners-guide-to-speech-analysis-4690ca7a7c05

Deep Supervised Learning

Training W

Text

' F seconds
Documents, sete

Vectors
Images,
etc. (:3 dBs

..f\
a N
T J - Machine \‘

= : Learning ’
1 \ Algorithm
S| & / We can convert audio data
: | > into a visual like
Hz representation called a
dB spectrogram using an FFT
2. Preprocess the data and Tor

color

design your Machine
Learning model

https://towardsdatascience.com/beginners-quide-to-speech-analysis-4690ca7a7c05



https://towardsdatascience.com/beginners-guide-to-speech-analysis-4690ca7a7c05

Deep Supervised Learning

= Training
Text,
Documents,
Images,
etc.

Preprocess the data and
design your Machine

=

—

Learning model

Feature
Vectors

seconds

https://towardsdatascience.com/beginners-quide-to-speech-analysis-4690ca7a7c05



https://towardsdatascience.com/beginners-guide-to-speech-analysis-4690ca7a7c05

Deep Supervised Learning

= Training
Text,
Documents,
Images,
etc.

2. Preprocess the data and
design your Machine

=

—

Learning model

Feature
Vectors

seconds

https://www.mentalfloss.com/article/61815/how-musicians-put-hidden-images-their-songs



https://www.mentalfloss.com/article/61815/how-musicians-put-hidden-images-their-songs

Deep Supervised Learning

= Training =
Text,
Feature
Documents, Vectors
images, |:>
etc. o
: ] B ahing
- Learning
Algorithm
Labels [ >
|

3. Train your model



Deep Supervised Learning

1 Training

Documents,
Images,
etc.

Labels

=

Feature
Vectors

>

]
]

3. Train your model

O

We want to update the
model parameters based

on the training data




Deep Supervised Learning

=1 Training W
Documents,

Labels

Feature

images, E> Vectors
etc.

>

]

]

3. Train your model

O

We want to update the
model parameters based

on the training data -- we
use stochastic gradient
descent!

3
0 25 0 15 10 40
5 =
theta 0 0 =510



Deep Supervised Learning

= Training |
Text, Feature
Do.c:‘r;:snts Vectors We want to update the
—ondll = o model parameters based
] B ;3 on the training data -- we
J -

use stochastic gradient
descent!

rﬂ Labe!s] ] [ >

3. Train your model

A Gl

Input x
This is called ™ O . O
backpropagation Q Q — Q



Deep Supervised Learning

. Training W
Text,
Documents, Fesnie

m.ges' E> Vectors
etc.
Labels
A )

]

Training can take
a LONG time so

we often use the
cloud to do this!

3. Train your model




Deep Supervised Learning

=1 Training

Documents,
Images,
etc.

Labels

=)

Feature

Vectors o

]
]

3. Train your model

What about on

device training?




Deep Supervised Learning

™ Training 1
Text,
Documents, Feature

lmages, [:> Vectors
etc.
] Ny

What about on
device training?

Hasn’t been
done much yet
with NNs.

Classical Learning (KNN): https://blog.arduino.cc/2020/06/18/simple-machine-learning-with-arduino-knn/

Federated Learning (using the edge devices more as sensors):
https://www.researchgate.net/profile/Poonam_Yadavi4/publication/341424819_Colearn_Enabling_Federated Learning_in_MUD-compliant_|
oT_Edge_Networks/links/5ebf7fc5299bf1c0%ac0b5dd/Colearn-Enabling-Federated-Learning-in-MUD-compliant-loT-Edge-Networks.pdf



https://blog.arduino.cc/2020/06/18/simple-machine-learning-with-arduino-knn/
https://www.researchgate.net/profile/Poonam_Yadav14/publication/341424819_CoLearn_Enabling_Federated_Learning_in_MUD-compliant_IoT_Edge_Networks/links/5ebf7fc5299bf1c09ac0b5dd/CoLearn-Enabling-Federated-Learning-in-MUD-compliant-IoT-Edge-Networks.pdf
https://www.researchgate.net/profile/Poonam_Yadav14/publication/341424819_CoLearn_Enabling_Federated_Learning_in_MUD-compliant_IoT_Edge_Networks/links/5ebf7fc5299bf1c09ac0b5dd/CoLearn-Enabling-Federated-Learning-in-MUD-compliant-IoT-Edge-Networks.pdf

Deep Supervised Learning

-

Feature
Vectors

4'

New Text,

Document,
image,

>

Feature
Vector

—

Machine
Learning

Algorithm

U

Predictive
Modei

4.

—

Evaluate your model and
improve hyper parameters




Deep Supervised Learning

Hyperpara meter

tuning
‘ Best
hyperparameters

Model
training

'@' ' Best model often only learn for
@ specific ranges of

parameters
hyperparameters!

4. Evaluate your model and
improve hyper parameters

Thisisa CRUCIAL
step as models will




Quick Aside:
Hyperparameter Tuning

2 Manual Search
5 T 4’ Can jump to good solutions
- X Requires a skilled operator
and no guarantees

> Random Search
> Jhny o v/ Often works as well as others
= X But can't be sure!

Grid Search
+/ Highly parallel and complete
X Very time consuming

Bayesian Optimization
v/ Principled and efficient
X Requires a model

https://missinglink.ai/quides/neural-network-concepts/hyperparameters-optimization-methods-and-real-world-model-management/

https://[dkopczyk.quantee.co.uk/hyperparameter-optimization/

https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d



https://missinglink.ai/guides/neural-network-concepts/hyperparameters-optimization-methods-and-real-world-model-management/
https://dkopczyk.quantee.co.uk/hyperparameter-optimization/
https://towardsdatascience.com/hyperparameters-optimization-526348bb8e2d

Deep Supervised Learning

-

Feature
Vectors

4'

New Text,

Document,
image,

>

Feature
Vector

—

Machine
Learning

Algorithm

U

Predictive
Modei

4.

—

Evaluate your model and
improve hyper parameters




Deep Supervised Learning

5. Deploy and efficient inference

engine for your model

New Text,
Document,

image,
etc.

=

—

Feature
Vector

—

&=

Expected
Label




Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

New Text, Vector
Document, R’edvctlv! Expected
Image, Label

etc.

This is the (ONLY) ONLINE STEP all

previous steps could have used cloud
resources e.g.,




Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

Feature
New Text,

Vector
Document, Predictive Expected
Image, Model Label

etc.

This is the (ONLY) ONLINE STEP all

previous steps could have used cloud
resources e.g.,

So now we have to worry
about real-world
constraints:

e Power
e Latency




Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

We need a compiler to

generate machine
specific optimized code!




Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

We need a compiler to

generate machine
specific optimized code!

TensorFlow

https://www.tensorflow.org/



https://www.tensorflow.org/

Deep Supervised Learning

5. Deploy and efficient inference

Model Optimization
Scripting Interface Cloud Serving

engine for your model

1F Labeling Tools Data Loading
Training Loop Variable Storage
UBGISES Metric Visualizer
[ensorFlow
https://www.tensorflow.org/
4

https://www.youtube.com/watch?v=_NcG5estXOU&list=PLtT1eAdRePYoovXJcDkVIRdabZ33H6Di0&index=:



https://www.tensorflow.org/
https://www.youtube.com/watch?v=_NcG5estXOU&list=PLtT1eAdRePYoovXJcDkV9RdabZ33H6Di0&index=4

Deep Supervised Learning

5. Deploy and efficient inference

engine for your model ~ TensorFlow Alternatives

Cloud
AutoML

TensorFlow [

https://www.tensorflow.org/
https://www.educba.com/tensorflow-alternatives/



https://www.tensorflow.org/
https://www.educba.com/tensorflow-alternatives/

Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

T

TensorFlow

https://www.tensorflow.org/
https://www.youtube.com/watch?v=_NcG5estXOU&list=PLtT1eAdRePYoovXJcDkVIRdabZ33H6Di0&index=4

Model Optimization

Scripting Interface Cloud Serving

But for efficient

inference -- do
we need all of

lizer

Math Library Feature Generation



https://www.tensorflow.org/
https://www.youtube.com/watch?v=_NcG5estXOU&list=PLtT1eAdRePYoovXJcDkV9RdabZ33H6Di0&index=4

Deep Supervised Learning

5. Deploy and efficient inference

Model Optimization
Scripting Interface Cloud Serving

engine for your model

1 F Labeling Tools Data Loading
Training Loop Variable Storage
UBGISES Metric Visualizer
[ensorFlow
https://www.tensorflow.org/

https://www.youtube.com/watch?v=_NcG5estXOU



https://www.tensorflow.org/
https://www.youtube.com/watch?v=_NcG5estXOU

Deep Supervised Learning

5. Deploy and efficient inference

engine for your model

Architecture

TensorFlow Lite

https://www.youtube.com/watch?v=_NcG5estXOU

https://medium.com/tensorflow/using-tensorflow-lite-on-android-2bbc9cb7dé9d



https://www.youtube.com/watch?v=_NcG5estXOU
https://medium.com/tensorflow/using-tensorflow-lite-on-android-9bbc9cb7d69d

Deep Supervised Learning

5. Deploy and efficient inference

engine for your model

Architecture

TensorFlow Model

O(500Kb)

TensorFlow Lite

https://www.youtube.com/watch?v=_NcG5estXOU

https://medium.com/tensorflow/using-tensorflow-lite-on-android-2bbc9cb7dé9d



https://www.youtube.com/watch?v=_NcG5estXOU
https://medium.com/tensorflow/using-tensorflow-lite-on-android-9bbc9cb7d69d

Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

Our board only
has 256Kb of
O(500Kb)

TensorFlow Lite

https://www.youtube.com/watch?v=_NcG5estXOU

https://medium.com/tensorflow/using-tensorflow-lite-on-android-2bbc9cb7dé9d



https://www.youtube.com/watch?v=_NcG5estXOU
https://medium.com/tensorflow/using-tensorflow-lite-on-android-9bbc9cb7d69d

Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

Only deploy
what you need!

TensorFlow Lite
MICRO

https://www.youtube.com/watch?v=_NcG5estXOU
https://medium.com/tensorflow/using-tensorflow-lite-on-android-2bbc9cb7dé9d



https://www.youtube.com/watch?v=_NcG5estXOU
https://medium.com/tensorflow/using-tensorflow-lite-on-android-9bbc9cb7d69d

Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

At the same time hardware
researchers have been
developing NN accelerators

Tensc

https://www.youtube.com/watch?v=_NcG5estXOU
https://medium.com/tensorflow/using-tensorflow-lite-on-android-2bbc9cb7dé69d



https://www.youtube.com/watch?v=_NcG5estXOU
https://medium.com/tensorflow/using-tensorflow-lite-on-android-9bbc9cb7d69d

Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

’ AVX-512 INT8 AVX-512INT8
wjout Intel® DL Boost (VNNI) w/ Intel® DL Boost (VNNI)

Up to 128 MACs in 3 cycles using 2 ports per core Up to 128 MACs in 1 cycle using 2 ports per core

TENSDRCDRE

rating | N

PASCAL TURING TENSOR CORES
g925

vpmaddubsw Multiply

—— — Accumulator - '- ‘:' 1
vpmaddwd Upconvert :
a3 Accumulator
=5 [INT32]

Accumulate

AxB=C [Il1t8]
[INT32]
3 instructions into one for up to 3x MACs/cycle using INT8

[ Accumulator ]

https://www. nextolatform com/2019/04/15/the-long-view-on-the-intel-xeon-architecture/



https://hexus.net/tech/reviews/graphics/122045-nvidia-turing-architecture-examined-and-explained/?page=4
https://www.nextplatform.com/2019/04/15/the-long-view-on-the-intel-xeon-architecture/

Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

Link Clock! Core Clock DCNN Accelerator :
' ' ° 14x12 PE Array On-Chip Spatval PE Array
i ilter
-»ﬂ;[;

Input Image

e Off-Chip DRAM
64 bits

Eyeriss Architecture Die Photo
https://eyeriss.mit.edu/


https://eyeriss.mit.edu/

Deep Supervised Learning

5. Deploy and efficient inference
engine for your model

100 | | .
Digital DNN
* - 2.38X & 28nm
Digital DNN ,
16nm
—
§ 95k -
o Digital SNN =
© 28nm
E Digital SNN g
8 28nm wn
90 i
< W & This work N
- Buhler et al. (VLSI'17)
A Whatmough et al. (ISSCC'17)
Analog SNN B Kim et al. (VLSI'15)
65nm & Merolla et al. (Scuence 14)
85 : :
0.0 0.1 0.2 0 3 0 4 0.5

Energy/Inference (u))

https://ieeexplore.ieee.org/document/8715387


https://ieeexplore.ieee.org/document/8715387

Deep Supervised Learning

1. LOTS of (unbiased) datal

2. Preprocess the data and design your model

3. your model (in the cloud)

4. Evaluate your model and improve hyper parameters
5. and efficient inference engine for your model



Deep Supervised Learning

1. Collect LOTS of (unbiased) datal!
Preprocess the data and design your model
Train your model (in the cloud)

Evaluate your model and improve hyper parameters

a M w N

Deploy and efficient inference engine for your model

Use a machine learning framework (e.g., TensorFlow)



From Deep Learning to TinyML




Models come in all
shapes and sizes

NASNet-A-Large
SE-ResNeX!1-101(32x4d) o
~ Inception-ResNet-v2
80 4w, . p eplion-vd SENei-154
SE-ResNeXt-50(32x4d) Xception Famaiy IPathNet-131
SE-ResNet: Net-152 eXt-101(64x4d)
3. 1-101(32x: esNet-152
SE-ResNel Inception-v3
DenseNel-201¢) nse’ﬁ{el-i(ﬂ ‘sNet— 101 ResNet-152
®  @ResNetso 939“0"‘95“8"10‘ VGG-19_BN
75 DualPathNet-GI: s DenseNet-169 VGG-16_BN
enseNel-’
= ONASNeI-gMobiIe
95: BN_,ncg“n @ ResNet-34 VGG-13_BN
g ® MobileNet-v2 VGG-11 BN
o
8 VGG-19
- 704 @RSt VGG-16
1
8- MobileNet-v1
= VGG-13
? ShuffleNet VGG-11
.GoogLstl
/. e
v V4
88/ /]
™M 5M 1OM 50M 76M  100M 150M
SqueezeNet-v1.1
‘e SqueszeNet-v1.0
. AlexNet
55 T T T T
0 5 10 15 20 25

Operations [G-FLOPs]

[Bianca et. al. Benchmark Analysis of Represenative Deep Neural Netwerk Architectures)



Models come in all
shapes and sizes

NASNet-A-Large
SE-ResNeXt-101(32xdd) !
o ~ Inception-ResNet-vZ
804 o : - (ieeption-va SENet-154
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Operations [G-FLOPs]

Originally models grew in
size and operations

NOTE HOW SMALL AND
CHEAP (in comparison)
ALEXNET ISt




Models come in all
shapes and sizes
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Operations [G-FLOPs]

New smaller and easier to
compute models have been
developed that are still very

accurate




Models come in all
shapes and sizes
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Operations [G-FLOPs]

New smaller and easier to
compute models have been
developed that are still very
accurate

They were designed to
target mobile devices




How tiny is Tiny?

) latforms

GoogleNet | ResNet

Table 4: Memory of CNN models on
Type/Platform AlexNet | VGGNet

Weights & Biases 233 528 26 97
Data 8 110 53 221
Workspace T 168 46 79

https://arxiv.ora/pdf/1709.09503.pdf


https://arxiv.org/pdf/1709.09503.pdf

How tiny is Tiny?

Table 4: Memory of CNN models on platforms
Type/Platform AlexNet  VGGNet  GoogleNet  ResNet

Weights & Biases 233 528 26 97
Data 8 110 53 221
Workspace T 168 46 79

Our board only

has 256Kb of
RAM!

https://arxiv.ora/pdf/1709.09503.pdf
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How can we compress
things further?



How can we compress

things further?

-

\_

Pruning and
Quantization
to the rescue!

~

J




removes the least
important “stuff” from the model

before pruning after pruning

pruning
synapses

-

pruning .
neurons




Pruning removes the least

important “stuff” from the model

Table 2: MobileNet sparse vs dense results

Width Sparsity NNZ Top-1 Top-5
params acc. acc.

1.0 0% 421M  70.6%  89.5%

50% 213M  695%  89.5%

75% 1.O9M  67.7%  88.5%

90% 046M  61.8% 84.7%

95% 025M  53.6%  78.9%

https://openreview.net/forum?id=S1IN69AT-

Very
small

accuracy
penalty!



https://openreview.net/forum?id=S1lN69AT-

Quantization compresses the
numerical representation

Range Accuracy
1 8 23
B 10%-10% .000006%

5
FP16 6x105-6x10¢ 05%

Reduced Size
Reduced Precision

https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf
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Quantization compresses the
numerical representation

Range Accuracy
1 8 23
R 10%-10%  .000006%
15 10
FP16 6x10-6x10 0%

Turns out weights are often even more
densely packed than that! 1

https://drive.google.com/file/d/1Pn-INOty-P1fX6G660a
6wvsEn46Xyx8Y

https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf ©
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https://drive.google.com/file/d/1Pn-lNOty-P1fX6G66oa6wvsEn46Xyx8Y

compresses the
numerical representation

Range Accuracy
1 8 23
S LRSIl SO can we do
y 2 better?
FP16 6x10%-6x10 05%
50.
40.
30.

https://drive.google.com/file/d/1Pn-INOty-P1fX6G660a
6wvsEn46Xyx8Y

20 4

10 1

https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-Tutorial-2015.pdf ©
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Quantization compresses the
numerical representation

sign <= exponent —-<

mantissa

p.

Floating-Point Format

mantissa * 1Qexponent



Quantization compresses the
numerical representation

sign <= exponent —-<4— mantissa —>

1 l%1]  mantissa * 108xPonent

fractional part ————

- i —— Reduced Range

ERRNE-T TS | Reduced Complexity
Fixed-Point Format We can use INTs

We can tune the size




Quantization needs to be

-5.4

\

We can do even better with a
of just the range we need!

Original 32-bit float values 0.0 +4.5

V| L

2 | 3| 4 8-bit encoding 251 | 252 | 253 | 254 | 255

5.4

— O

B 0 L L

Reconstructed 32-bit float values
https://www.youtube.com/watch?v=-iBmaY aFwE&feature=youtu.be



https://www.youtube.com/watch?v=-jBmqY_aFwE&feature=youtu.be

Quantization needs to be
optimized for each model!

20000

15000t

10000+

density

5000t

xXx linear quantization

®9® (lustring and finetuning

nonlinear quantization by

® o000 @ L
X X X X X X X X X X X X X X

https://arxiv.org/pdf/1510.00149.pdf

0.00 0.02

weight value

—0.02


https://arxiv.org/pdf/1510.00149.pdf

Quantization needs to be
optimized for each model!

20000 . -
xXx linear quantization
nonlinear quantization by
®®® (|ustring and finetuning
15000+
,E’ 10000¢
g
5000t
There are lots of other acvanced
| quantization scheme topics that we may
« x x 1 seein papers later in the semester (e.g.,

o symmetric vs. asymmetric, zero point)

https://arxiv.org/pdf/1510.00149.pdf
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Quantization, does it work?

Our board only
has 256Kb of
RAM so
compressing the
model is crucial!

E.g., in the Wake
Words Assignment the

quantization reduces
the model size by 4x
(Float32 -> INT8)




Quantization, does it work?

But is there an
accuracy penalty?

E.g., in the Wake
Words Assignment the
quantization reduces

the model size by 4x
(Float32 -> INT8)




Quantization, does it work?

E.g., in the Wake
Words Assignment the
quantization reduces

the model size by 4x
(Float32 -> INTS8)

For Wake Words it actually improves!
91.91% to 91.99%




Quantization, does it work?

https://arxiv.org/pdf/1910.04877.pdf


https://arxiv.org/pdf/1910.04877.pdf

Quantization needs to be
optimized for each model!

Case B
geSt ' Proposed
rror ; Meth ..
& et od Retraining
i LS ' improves
} lteration ; P
—» = accuracy after

quantization

Training_—b Retraining

A\

Epochs

https://arxiv.org/pdf/1805.11233.pdf
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Quantization needs to be
optimized for each model!

Quantization: less bits per weight

Pruning: less number of weights

l {
: Train Connectivity ]
original | _
network 1 <z
I
C> : Prune Connections
original ; _
size | z
1 (
; Train Weights
(I
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https://arxiv.org/pdf/1712.05877.pdf
https://arxiv.org/pdf/1510.00149.pdf

Pruning and Quantization
to the rescuel

O Pruning + Quantization # Pruning Only <+ Quantization Only < SVD

0.5% : : : :

0.0% : —
-0.5% e :
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%
-4.5%

Accuracy Loss

f 2 ‘n : : - =
2% 5% 8% 1% 14‘/0 17% 20%
[ Model Size Ratio after Compression ]

https://arxiv.ora/pdf/1510.00149.pdf
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And that'’s all folks!




Quick Summary:

e The Supervised Deep Learning
flow in practice is: Collect,
Preporcess/Design, Train,
Evaluate, and Deploy

® (Cleaning and organizing data: 60%

® (ollecting data sets; 19%




Quick Summary:

e The Supervised Deep Learning flow in
practice is: Collect, Preporcess/Design, Train,
Evaluate, and Deploy

e Effective learning requires lots
of unbiased data, regularization
(Dropout, Data Augmentation),
efficient training (Batch
Updates, Adaptive Learning
Rates), and hyperparameter

tuning

(b) After applying dropout.



Quick Summary:

e The Supervised Deep Learning flow in
practice is: Collect, Preporcess/Design, Train,
Evaluate, and Deploy

e Effective learning requires lots of unbiased
data, regularization (Dropout, Data
Augmentation), efficient training (Batch
Updates, Adaptive Learning Rates), and
hyperparameter tuning

e TinyML is enabled by inference
optimizations including pruning
and quantization
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Quick Summary:

The Supervised Deep Learning flow in
practice is: Collect, Preporcess/Design, Train,
Evaluate, and Deploy

Effective learning requires lots of unbiased
data, regularization (Dropout, Data
Augmentation), efficient training (Batch
Updates, Adaptive Learning Rates), and
hyperparameter tuning

TinyML is enabled by inference optimizations
including pruning and quantization

ML practitioners need to
consider the ethics and
security of their applications

uponda"

57.7% confidence

“gibbon”
99.3% confidence



Please fill out the
feedback poll!




