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What are the prerequisites for CS 249r?

1.CS 141 and/or basic computer architecture and digital design
2.CS 61/161 and/or a basic systems programming experience
3.CS 124 and/or a basic algorithms experience

. As such, we intend
to provide some background on all of the topics. That said, students may
find it helpful if they also have some background in some of the
algorithms employed in autonomous systems from classes such as CS
181/182 or AM 121. Please contact the instructor or teaching fellow if
you are interested in taking the course but are unsure about whether the
background you have is suitable.




So how is C5249r actually going to run?

Date Module Class Type Topic Notes
Wed, Sep 4. Introduction Lecture Course Introduction, Overview, and Nuts and Bolts
Mon, Sep 9 Lecture Intro to Robotics (Perception and Mapping)

Wed, Sep 11 Motivation Lecture Intro to Robotics (Planning and Control)
Mon, Sep 16 Lecture Intro to Domain Specific Architectures
Wed, Sep 18 Sample Presentations Research Paper(s) Example Research Paper Presentations
Mon, Sep 23: Domaln Specific Accelerators Research Paper(s) Domgn Specific Accelerators
Wed, Sep 25 Research Paper(s) Domain Specific Accelerators
Mon, Sep 30 Guest Lecture Reinforcement Learning 101 Tentative
Wed, Oct 2 ML Motivation Guest Lecture Deep Reinforcement Leaming 101 Tentative
Mon, Oct 7. No Class Columbus Day
Wed, Oct 9 Research Paper(s) E2E Control
Mon, Oct 14 E2E Control Research Paper(s) E2E Control
Wed, Oct 16 Research Paper(s) E2E Control
Mon, Oct 21' Research Paper(s) EZE Control
Wed, Oct23 Conference Paper Review Conference Paper Review Simulated Conference Paper Review Meeting
Maon, Oct 28 Research Paper(s) Perception / Mapping Project Proposals Due
Wed, Oct 30 Perception / Mapping Research Paper(s) Perceptl.on / Mapp:lng
Maon, Nov 4 Research Paper(s) Perception / Mapping
Wed, Nov 6 Research Paper(s) Perception / Mapping
Mon, Nov l.ll Research Paper(s) Planning / Control
Wed, Nov 13 PRGNl Research Paper(s) Planning / Control
Mon, Nov 18 Research Paper(s) Planning / Control
Wed, Nov 20 Research Paper(s) Planning / Control
Mon, Nov 25 No Class Thanksgiving
Wed, Nov 27 No Class Thanksgiving
Mon, Dec 2' Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class
Wed, Dec 4 No Class Reading period

Mon, Dec 9 Project Presentations Project presentations Project Reports Due




So how is C5249r actually going to run?

Date Module Class Type Topic Notes

Wed, Sep 4 Introduction Lecture Course Introduction, Overview, and Nuts and Bolts

Mon, sgp 9: Lecture Intro to Robotics (Perception and Mapping)
Wed, Sep 11 Motivation Lecture Intro to Robotics (Planning and Controf) . . .
Mon, Sep 16 Lecture Intro to Domain Specific Architaciures We will provide high level background
Wed, Sep 18  Sample Presentations Research Paper(s) Example Research Paper Presentations
Mon, Sep ZSI i ) Research Paper(s) Domain Specific Accelerators l ECt u res tO gEt eve ryo n e u p tO S pee d O n

i _ | Domain Specific Accelerators = i = .

ed.Sans r— e ———— the relevant topics from both
Mon, Sep 30 Guest Lecture Reinforcement Learning 101 Tentative

Wed, Oct 2 ML Motivation Guest Lecture Deep Reinforcement Leaming 101 Tentative Autonomous Syste msS / Ro bOt|CS an d

vion, Ocl NO Class olumbus Day .

Wed, Oct Research Paper(s) E2E Control Com puter Systems / AI’Ch |tectu re
Mon, Oct 14 S s Research Paper(s) EZ2E Control
Wed, Oct 16 Research Paper(s) E2E Control

Mon, Oct 21' Research Paper(s) EZE Control
Wed, Oct 23 Conference Paper Review Conference Paper Review Simulated Conference Paper Review Meeting

Mon, Oct Z‘BI Research Paper(s) Perception / Mapping Project Proposals Due
Wed, Oct SOI Perception / Mapping Research Paper(s) Perceplf‘on ] Mapp.lng

Mon, Nov 4 Research Paper(s) Perception / Mapping

Wed, Nov 6 Research Paper(s) Perception / Mapping
Mon, Nov l.ll Research Paper(s) Planning / Control
Wed, Nov 13' Research Paper(s) Planning / Control

| Planning / Control

Mon, Nov 18 Research Paper(s) Planning / Control
Wed, Nov 20' Research Paper(s) Planning / Control
Mon, Nov 25 No Class Thanksgiving
Wed, Nov 27 No Class Thanksgiving

Mon, Dec 2 Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class

Wed, Dec 4: No Class Reading period

Mon, Dec 9 Project Presentations Project presentations Project Reports Due




So how is C5249r actually going to run?

__| Domain Specific Accelerators _

Introduction Lecture Course Introduction, Overview, and Nuts and Bolts

Lecture Intro to Robotics (Perception and Mapping)
Motivation Lecture Intro to Robotics (Planning and Control)

Intro to Domain Spe We will provide high level background
lectures to get everyone up to speed on
the relevant topics from both
Autonomous Systems / Robotics and

Computer Systems / Architecture

Sample Presentations Research Paper(s)

Research Paper(s)

ass

Research Paper(s) E2E Control
S st Research Paper(s) E2E Control
Research Paper(s) E2E Control
Research Paper(s) EZE Control
Conference Paper Review Conference Paper Review Simulated Conference Paper Review Meeting
Research Paper(s) Perception / Mapping Project Proposals Due
Research Paper(s) Perception / Mapping
PErceplon TMAPPG  Research Paper(s)  Perception / Mapping Class on 9/11 will be video
Research Paper(s) Perception / Mapping
Research Paper(s) Planning / Control ta ped ( b ut not pOSted
Planning / Control Research Paper(s) Planning / Control a nyW h e re) as | am d 0| ng a
Research Paper(s) Planning / Control . .
Research Paper(s) Planning / Control Bok Center teaching review.
hb Cisn Thaniaghing We will have a “no camera”
No Class Thanksgiving .
Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class section as well.
No Class Reading period
Project Presentations Project presentations Project Reports Due




So how is C5249r actually going to run?

Mon, Oct 14

Wed, Oct 16

Mon, Oct 21

Wed, Oct 23

Mon, Oct 28
Wed, Oct 30
Maon, Nov 4

Wed, Nov 6

Mon, Nov 11

Wed, Nov 13

Mon, Nov 18

Wed, Nov 20

Mon, Nov 25

Wed, Nov 27

Mon, Dec 2
Wed, Dec 4
Mon, Dec 9

23
Wed, Sep 28/
Mon, Sep 30

Wed, Oct 2
Mon, Oct 7
Wed, Oct 9

Module Class Type Topic Notes
Introduction Lecture Course Introduction, Overview, and Nuts and Bolts
Lecture Intro to Robotics (Perception and Mapping)
Motivation Lecture

Intro to Robotics (Planning and Controf)

niro o Domain Niteciures

DECITC A

| Sample Presentations  Research Paper(s) Example Research Paper Presentations

esearc
| Domain Specific Accelerators
| Research Paper(s) Domain Specific Accelerators

Guest Lecture Reinforcement Learning 101 Tentative
ML Motivation Guest Lecture Deep Reinforcement Leaming 101 Tentative
No Class Columbus Day
Research Paper(s) E2E Control
E2E Control Research Paper(s) E2E Control
Research Paper(s) E2E Control
Research Paper(s) EZE Control
Conference Paper Review Conference Paper Review Simulated Conference Paper Review Meeting

Research Paper(s) Perception / Mapping Project Proposals Due

Perception / Mapping Research Paper(s) Perceptl.on ] Mapp:lng
Research Paper(s) Perception / Mapping
Research Paper(s) Perception / Mapping
Research Paper(s) Planning / Control
Research Paper(s) Planning / Control

Planning / Control
Research Paper(s) Planning / Control
Research Paper(s) Planning / Control
No Class Thanksgiving
No Class Thanksgiving
Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class

No Class Reading period

Project Presentations Project presentations Project Reports Due

We are also going to have a day of
sample presentations to provide a guide
for the types of presentations we hope
you will give on your research papers
throughout the semester and on your
final projects




So how is C5249r actually going to run?

Wed, Oct 9
Mon, Oct 14

Wed, Oct 16

Mon, Oct 21

Mon, Oct 28
Wed, Oct 30
Maon, Nov 4

Wed, Nov 6

Mon, Nov 11

Wed, Nov 13

Mon, Nov 25

Wed, Nov 27

Mon, Dec 2
Wed, Dec 4
Mon, Dec 9

Module
Introduction

Motivation

Sample Presentations

| Domain Specific Accelerators

Class Type
Lecture
Lecture
Lecture
Lecture
Resed N Haped
Research Paper(s)
Research Paper(s)

Topic Notes

Course Introduction, Overview, and Nuts and Bolts
Intro to Robotics (Perception and Mapping)
Intro to Robotics (Planning and Control)
Intro to Domain Specific Architectures

xample Research Paper Presentation
Domain Specific Accelerators
Domain Specific Accelerators

ML Motivation

EZ2E Control

Perception / Mapping

Planning / Control

Final Project

Euesl Lecture
Guest Lecture

(gL

Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)

Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s
No Class

No Class

Final Class

No Class

Project Presentations

?anatlve
Temative

einforcement Learning 101
Deep Reinforcement Leamning 101
gliumop )3
E2E Control
E2E Control
E2E Control
E2E Control

Perception / Mapping Project Proposals Due
Perception / Mapping

Perception / Mapping

Perception / Mapping

Planning / Control

Planning / Control

Planning / Control

Planning / Control

Thanksgiving

Thanksgiving

Wrap Up / Project Check-Ins / Office Hours in Class

Reading period
Project presentations

Project Reports Due

2 students per class will present on

selected papers organized by topic




torun?

Module
Introduction

Motivation

Sample Presentations

_ Domain Specific Accelerators

ML Motivation

EZE Control

Perception / Mapping

Planning / Control

Final Project

Lecture

Lecture
Lecture
Lecture
Research Papes
Research Paper(s)
Research Paper(s)
uest Lecture
Guest Lecture
Ng
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)

onference Paper Review Simulated

Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)

No Class
No Class
Final Class
No Class

Project Presentations

We have posted a tentative paper list
to Canvas (along with PDFs and links)

_ e : -
Course Introduction, Overview, and Nuts and Bolts
Intro to Robotics (Perception and Mapping)

Intro to Robotics (Planning and Control)

Intro to Domain Specific Architectures
xample Research Paper Presentation

Domain Specific Accelerators

Domain Specific Accelerators

Reinforcement Learning 10 entative

Deep Reinforcement Leaming 101 Tentative
glumbus Da

E2E Control

E2E Control

E2E Control

EZE Control

2 students per class will present on
selected papers organized by topic

Perception / Mapping Project Proposals Due
Perception / Mapping
Perception / Mapping
Perception / Mapping
Planning / Control
Planning / Control
Planning / Control
Planning / Control
Thanksgiving
Thanksgiving

Wrap Up / Project Check-Ins / Office Hours in Class
Reading period
Project presentations

Project Reports Due




So how is C5249r actually going to run?

Learnlng Dexterity

We've trained a human-like robot hand to manipulate physical objects
with unprecedented dexterity.




So how is C5249r actually going to run?

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based
Character SKkills

Transactions on Graphics (Proc. ACM SIGGRAPH 2018)

Xue Bin Peng(1) Pieter Abbeel(1) Sergey Levine(1) Michiel van de Panne(2)
(1)University of California. Berkeley (2)University of British Columbia




So how is C5249r actually going to run?

nt Learning of Physics-Based

SIPP Hardware
Imaging Accelerators | igem == \PH 2018)

i Michiel van de Panne(2)
""" of British Columbia
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So how is CS249r actually going to run?
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So how is C5249r actually going to run?
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So how is C5249r actually going to run?

—_—

B Figure 4: Testing setup and example output images. Left: Oval dirt test track where all test data was
taken. Center: Photo of vehicle during testing. Right: Neural network input, top down output, and
image plane output.




So how is C5249r actually going to run?

’as
nd

Fig. 12 Atlas walking continuously up six cinder block steps using LIDAR-based state
estimation in a closed loop with the walking controller. Top: images of the robot climbing
the stack of cinder blocks in our laboratory. Bottom: the state estimate rendering in our
user interface.




So how is C5249r actually going to run”?

We have posted a tentative paper list

Wed, Sep 4 Introduction Lecture Course Introduction, Overview, and Nuts and Bolts to Canvas (along with PDFs and ||nks)
~ Mon, Sep 9 Lecture Intro to Robotics (Perception and Mapping)
Wed, Sep 11 Motivation Lecture Intro to Robotics (Planning and Control) . .
Mon, Sep 16 Gackies S e Start to think about which papers you
Wed. Sep 18 Sample Presentations Research Pape: xample Research Paper Presentation

Research Paper(s) Domain Specific Accelerators

__ Domain Specific Accelerators

want as we will be allocating them in

Wed, Sep 25 Research Paper(s) Domain Specific Accelerators
Mon, Sep 30 uest Lecture Reinforcement Learning 10 entative a Week Or tWO !
Wed, Oct 2 ML Motivation Guest Lecture Deep Reinforcement Leaming 101 Tentative

EZE Control

NGO

Research Paper(s)
Research Paper(s)
Research Paper(s)

glumbus D3

E2E Control
E2E Control
E2E Contral
EZE Control

2 students per class will present on
selected papers organized by topic

Project Proposals Due

Perception / Mapping Research Paper(s) Perception / Mapping
Research Paper(s) Perception / Mapping
Research Paper(s) Perception / Mapping
Research Paper(s) Planning / Control
Priiting { Conot Research Paper(s) Planning / Control
Research Paper(s) Planning / Control
ap Planning / Control
Mon, Nov 25 No Class Thanksgiving
Wed, Nov 27 No Class Thanksgiving
Mon, _Eh.cz Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class
Wed, Dec 4 No Class Reading period
Mon, Dec 9 Project Presentations Project presentations Project Reports Due




SO

how is C5249r actually going to run?

~ Date
Wed, Sep 4
Mon, Sep 9

Mon, Sep 16

Wed. Sep

want as we will be allocating them i
Wed, Sep 25 Research Paper(s) Domain Specific Accelerators

We have posted a tentative paper list

Introduction Lecture Course Introduction, Overview, and Nuts and Bolts to Canvas (along with PDFs and links)
Lecture Intro to Robotics (Perception and Mapping)

Motivation Lecture Intro to Robotics (Planning and Control) . o
Esciiie S e Start to think about which papers you

Sample Presentations Research Pape Research Paper Preseptation

ample

entative
Tentative

uest Lecture
Guest Lecture

— a week or two!
Deep Reinforcement Leaming 101

15 )3

ML Motivation

If you have an idea for a paper not on
the list please run it by us and we
may be willing to swap it in!

E2E Control
E2E Control
E2E Contral
EZE Control

Research Paper(s)
Research Paper(s)
Research Paper(s)

EZE Control

| mulated Conference Paper He (]
Research Paper(s) Perception / Mapping Project Proposals Due
Pacception/Mepplny. | oomch Paperls) [ Perception | Magping 2 students per class will presentations
Research Paper(s) Perception / Mapping . k
Research Paper(s)  Perception / Mapping on selected papers organized by topic
Research Paper(s) Planning / Control
Planning/ Control | eoearch Paper(s) :::::: o

Research Paper(s)
Research Paper(s

No Class
No Class Thanksgiving

Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class
No Class Reading period

Project Presentations Project presentations Project Reports Due




So how is C5249r actually going to run?

Date Module Class Type Topic Notes
Wed, Sep 4. Introduction Lecture Course Introduction, Overview, and Nuts and Bolts
Mon, Sep 9 Lecture Intro to Robotics (Perception and Mapping)
Wed, Sep 11 Motivation Lecture Intro to Robotics (Planning and Controf)
Moﬂ.sq@.ls Lecture niro to Domain Soecific Architectiires
Wed,Sep18  Sample Presentations  Research Paper(s)
Mon, Sep ZSI Domaln Specific Accelerators Research Paper(s) Domain Specific Accelerators
Wed, Sep 25 Research Paper(s) Domain Specific Accelerators . ] .
Mon, Sep 30 Guest Lecture Reinforcement Learning 101 Tentative We will simulate the conference review
Wed, Oct 2 ML Motivation Guest Lecture Deep Reinforcement Leaming 101 Tentative . . .
Mon, Oct 7| B Colie Dy process in the middle of the term to give
Wed, Oct 9 Research Paper(s) E2E Control : H H
s e — students insight into how papers are
EZ2E Control . )
Wed, Oct 16. Research Paper(s)  E2E Control judged and thus accepted or rejected
Mon, OC] Research Papet ontro
Wed, Oct 23| Conference Paper Review Conference Paper Review Simulated Conference Paper Review Meeting
vian, Oct 28 Research Paper(s Perception / Mapping Project Proposals Due . . .
WeOOUI e RessachPaers)  Pecepton/ Mapping We will discuss the reviews of an
hP P jon / i :
Maon, Nov 4 Research Paper(s) ercepl!on Mapping accepted pa per durlng the example
Wed, Nov 6 Research Paper(s) Perception / Mapping
Mon, Nov 11 Research Paper(s) Planning / Control paper prese ntations
Wed, Nov 13 Research Paper(s) Planning / Control
{ Planning / Cantrol
Mon, Nov 18 Research Paper(s) Planning / Control
Wed, Nov 20 Research Paper(s) Planning / Control
Mon, Nov 25 No Class Thanksgiving
Wed, Nov 27 No Class Thanksgiving
Mon, Dec 2 Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class
Wed, Dec 4 No Class Reading period

Mon, Dec 9 Project Presentations Project presentations Project Reports Due




So how is C5249r actually going to run?

Wed, Sep 4 Introduction Lecture Course Introduction, Overview, and Nuts and Bolts
Mon, Ssi) 9 Lecture Intro to Robotics (Perception and Mapping)

Wed, Sep 11 Motivation Lecture Intro to Robotics (Planning and Controf)

Mon, Sep 16 Lecture n Nomain Soecific Architectiires

D) £ I - 1
Example Research Paper Presentations

Wed, Sep 13! Sample Presentations Research Paper(s)

Mm_'l_. Sep 23| Domaln Specific Accelerators Research Paper(s) omas:n Specific Accelerators

\H_ed.SepZS! Research Paper(s) Domain Specific Accelerators . ] .

Mon, Sep 30 Guest Lecture Reinforcement Learning 101 Tentative We will simulate the conference review
Wed, Oct 2 ML Motivation Guest Lecture Deep Reinforcement Leaming 101 Tentative . . .
Mon, Oct 7. No Class Columbus Day process in the middle of the term to give
Wed, Oct 9 Research Paper(s) E2E Control H H H
wonodis e ras— (oot students insight into how papers are

MGty REMSEGFaoN( | G5 N judged and thus accepted or rejected
Vion, Oct 28 Research Paper(s Perception / Mapping Project Proposals Due . . .

WoONS g FeSSwENPapers)  Percepion/ Mapong We will discuss the reviews of an
ol emenich Saeu ) Temeion. g accepted paper during the example
Wed, Nov 6i Research Paper(s) Perception / Mapping X

Mon, Nov 11 Research Paper(s) Planning / Control paper prese ntations

Wed, Nov 13 Research Paper(s) Planning / Control

| Planning / Control

Mon, Nov 18 . Research Paper(s) Planning / Control ’

Wed, Nov 20 Research Paper(s) Planning / Control You’ll actually get to see the

Mon, Nov 25 No Class Thanksgiving . . .

Wea, Nov 27 I g submitted version and final
Mon, Dec 2 Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class version of one of my papers
Wed. Dec 4 No Class Reading period

with the actual reviews

Mon, Dec 9 Project Presentations Project presentations Project Reports Due




So how is C5249r actually going to run?

Date
Wed, Sep 4

Mon, Sep 9
Wed, Sep 11

Mon, Sep 16

Wed, Sep 18
Mon, Sep 23

Mon, Sep 30
Wed, Oct 2
Mon, Oct 7
Wed, Oct 9

Mon, Oct 14

Wed, Oct 16

Mon, Oct 21

Wed, Oct 23

Mon, Oct 28

Wed, Oct 30
Mon, Nov 4

Wed, Nov 6

Mon, Nov 11
Wed, Nov 13
Mon, Nov 18
Wed, Nov 20
Mon, Nov 25
Wed, Nov 27
Mon, Dec 2
Wed, Dec 4
Mon, Dec 9

Module
Introduction

Motivation

Sample Presentations

Domain Specific Accelerators
Wed, Sep 25

ML Motivation

EZ2E Control

Conference Paper Review

Perception / Mapping

Planning / Control

Final Project

Class Type Topic Notes
Lecture Course Introduction, Overview, and Nuts and Bolts
Lecture Intro to Robotics (Perception and Mapping)
Lecture Intro to Robotics (Planning and Controf)
Lecture Intro to Domain Specific Architectures
Research Paper(s) Example Research Paper Presentations
Research Paper(s) Domain Specific Accelerators
Research Paper(s) Domain Specific Accelerators
Guest Lecture Reinforcement Learning 101 Temntative
Guest Lecture Deep Reinforcement Leaming 101 Tentative

No Class Columbus Day

Research Paper(s) E2E Control
Research Paper(s) E2E Control
Research Paper(s) E2E Control
Research Paper(s) EZE Control

Conference Paper Review Simulated Conference Paper Review Meetin:
Research Paper(s) Perception / Mapping

Research Paper(s) Perception / Mapping

Perception / Mapping

Perception / Mapping

Planning / Control

Planning / Control

Planning / Control

Planning / Control

Project Proposals Due

Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)

No Class Thanksgiving

No Class Thanksgiving

Final Class Wrap Up / Project Check-Ins / Office Hours in Class
No Class Reading period

Project Presentations Project presentations Project Reports Due

Finally we wrap up the semester with a
lot of time to work on and then present
final projects.

Note the mid semester project proposal
due date!




How do you get an A in CS 249r?

1. Paper Reviews — 20%

2. Paper Presentation — 20%
3. Class Participation — 10%
4. Final Project — 50%




Paper Reviews — 20%

1. To develop the skill of reading papers and quickly
taking away the big picture ideas.

1. Submit a short “review” on each research paper read

during the course (and submit the review 36 hours BEFORE
the class in which it is presented)




Paper Reviews — 20%
We will use HOTCRP (the standard submission

system from Computer Architecture Conferences)

Goals:
1. To develop the skill of reading papers and quickly
taking away the big picture ideas.

Assignments:
1. Submit a short “review” on each research paper read

during the course (and submit the review 36 hours BEFORE
the class in which it is presented)




Paper Reviews — 20%

1. To develop the skill of reading papers and quickly
taking away the big picture ideas.

1. Submit a short “review” on each research paper read

during the course (and submit the review 36 hours BEFORE
the class in which it is presented)




Paper Presentation(s) — 20%

1. To develop the skill of understanding a paper in detail
2. Practice presenting a (conference) paper to audience
and teaching a concept to a class

1. Give at least one 18 minute presentation on a

research paper followed by 10 minutes of Q&A (and
meet with the course staff a week prior to your presentation)




Paper Presentation(s) — 20%

Goals:

1. To develop the skill of understanding a paper in detail

2. Practice presenting a (conference) paper to audience and
teaching a concept to a class

Assignments:

1. Give at least one 18 minute presentation on a research paper

followed by 10 minutes of Q&A (and meet with the course staff a
week prior to your presentation)

~5 minutes of setup (What is the problem? Why is it important? What are the key challenges?)

~5 minutes of contribution (What did the author(s) do? Why was it novel?)

~8 minutes of context (What work did it build on /how does it compare?)




Class Participation — 10%

1. Practice absorbing a (conference) paper presentation
2. To give feedback to presenters

1. Be an active participant in class
2. Submit anonymous feedback on each presentation




Final Project — 50%

1. Practice being a graduate student:
a) Coming up with a research idea
b) Workshopping the idea with others / advisors
c) Collaboratively conducting the research
d) Writing up a (conference) paper in Latex
e) Giving a presentation on the paper

1. Work in teams of 2-3 students to submit a project proposal
midway through the semester and a final project report at the end
of the semester as well as presenting that research to the class




Final Project — 50%

We would love to find a way to incorporate

your research into your final project

Goals:
1. Practice being a graduate student:
a) Coming up with a research idea
b) Workshopping the idea with others / advisors
c) Collaboratively conducting the research
d) Writing up a (conference) paper in Latex
e) Giving a presentation on the paper

Assignments:

1. Work in teams of 2-3 students to submit a project proposal
midway through the semester and a final project report at the end
of the semester as well as presenting that research to the class




Any questions?




Quick survey of all of you

Undergrads vs Grads

Definitely vs Maybe Enrolling

Architecture vs. Robotics / Autonomous Systems vs. Neither




Ok so lets dive into a little material for next week!




What do we mean by an Autonomous System?

Real World

Sensors Compute

Autonomous System




What do we mean by an Autonomous System?




Autonomous Systems / Robotics is a BIG space

Autonomous Systems

Mechaymsm e Mapplng &
Design Localization

o "' o' We™ Wo
! !

Hardware Focus<« @ciqoiiiicis Bl z1.= »Software Focus

Planning




Autonomous Systems / Robotics is a BIG space

Autonomous Systems

Mechaymsm e Mapplng &
Design Localization

WO Wo™ We
!

Hardware Focus<« @ciqoiiiicis Bl z1.= »Software Focus

Planning




Mechanism designers create new robots and actuators

Fig. 4: The modular actuator used in the Mini Cheetah. Motor, planetary
gear set, and control electronics are all built-in.

Fig. 5: Exploded view of the actuator.

. Electronics cover

Controller I

Rotor
Output Bearing Statgr " o

/ Planet needle bearings

Output pins

Planets

1[

\ Planet carrier

Katz, Di Carlo and Kim ICRA 2019 Front housing DC power




Mechanism designers create new robots and actuators

MIT 2.74

MIT, Minik Chieetah

MIT Biomimetic Robotics. Laboratory




Mechanism designers create new robots and actuators

<
WYSS § INSTITUTE
>




Mechanism designers create new robots and actuators

THEOCTOBOT IS THE FIRST
ENTIRELY SOFT, AUTONOMOUS ROBOT

<
WYSS S INSTITUTE
>




Autonomous Systems / Robotics is a BIG space

Autonomous Systems

Mechaymsm e Mapplng &
Design Localization

WO o™ Weo™ Wo
!

Hardware Focus<« @ciqoiiiicis Bl z1.= »Software Focus

Planning




Sensor designers try to find new ways to collect data
about the world around the autonomous system

MEMs IMUs / Gyroscopes Motor Encoders




Sensor designers try to find new ways to collect data
about the world around the autonomous system

(and other Structured Waves e.g., Sonar,
RADAR, etc.)




Sensor designers try to find new ways to collect data
about the world around the autonomous system

Unstructured Light (aka Cameras)




Sensor designers try to find new ways to collect data
about the world around the autonomous system

Unstructured Light (aka Cameras)

’ Computer
o Vision
y |

Usable

(we’ll talk
Data

about this
later)




Sensor designers try to find new ways to collect data
about the world around the autonomous system

3D Reconstruction

http://www.gelsight.com/




Key Takeaways:

1. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware and
requirements for control algorithms

2. Understanding the sensors on your system will help you
understand at what rate you can get information and the
bandwidth of the information you will need to process

3. Different kinds of sensors will require different amounts of
onboard compute to process the information




Our topic for next week — Compute!
Autonomous Systems / Robotics is a BIG space

Robotics
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Your homework for next week 1/2

Pre-Reads for Intro to Robotics (Perception and
Mapping)

Chris Urmson: How a driverless car sees the road 2

Meet Spot, the robot dog that can run, hop and open doors | Marc Raibert e

2
=ge

5
-
.
=
=
"
b




Your homework for next week 2/2

Pre-Reads for Intro to Robotics (Planning and
Control)

Computer Architeecture to Close the Loop in Real-time Optimization:
https://ieeexplore.iece.org/document/7402937

The Architectural Implications of Autonomous Driving: Constraints and
Acceleration: hittps://web.eecs.umich.edu/~shihclin/papers/AutonomousCar-ASPLOS18.pdf & =

A Summary of Team MIT's Approach to the Virtual Robotics Challenge:
https://agile.seas.harvard.edu/files/agile/files/vrc entry.pdf

I




And finally some fun robot videos
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CS 249r: Special Topics in Edge Computing

Intro to Autonomous Systems / Robotics Part 1
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What do we mean by an Autonomous System?




So how is CS249r actually going to run?

Course Introduction, Overview, and Nuts and Bolts
Lecture Intro to Robotics (Perception and Mapping)

Intro to Robotics (Planning and Control) Background Lectures

Namain aTcTadis’ Arcolaratn

Reinforcement Learning 101

Earmning L

Research Paper(s) E2E Control

v | Research Paper(s) E2E Control
———| E2E Control
Wed, Oct 16 e Research Paper(s) E2E Control
Mon, Oct 21 Research Paper(s) EZE Control . .
m Oct23 Conference Paper Review Conference Paper Review Simulated Conference Paper Review Meeting Re d d In g / P rese ntl n g Pa p ers
Hanm'z'sl Research Paper(s) Perception / Mapping Project Proposals Due
Wed, Oct 30 Perception/ Mepping Research Paper(s) Perception / Mapping
H@_wu_!_b_v_‘s Research Paper(s) Perception / Mapping
~Wed, Nov 6 Research Paper(s) Perception / Mapping
Mon, Nov 11 Research Paper(s) Planning / Control
Wed, Nov 13 Planning / Control Research Paper(s) Planning / Control

Mon, Nov 18 Research Paper(s) Planning / Control

Mon, Nov 25 No Class Thanksgiving
Wed, Nov 27 No Class Thanksgiving

~ Mon, Dec 2 Final Project Final Class Wrap Up / Project Check-Ins / Office Hours in Class Fina | P roj ect
Wed, Dec 4 No Class Reading period

Project Presentations Project presentations Project Reports Due




So how is CS249r actually going to run?

FYI the exact dates of
the first couple

weeks are moving

EZE Control

Perception / Mapping

Planning / Control

Final Project

Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)

Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)
Research Paper(s)

No Class
No Class
Final Class
No Class

Project Presentations

Course Introduction, Overview, and Nuts and Bolts
Intro to Robotics (Perception and Mapping)

Intro to Robotics (Planning and Control)

Intro to Domain Specific Architectures

Xampie Reses

E2E Control
E2E Control
E2E Control
EZE Control

Conference Paper Review Conference Paper Review Simulated Conference Paper Review Meeting
Perception / Mapping
Perception / Mapping
Perception / Mapping
Perception / Mapping

Planning / Control
Planning / Control
Planning / Control
Thanksgiving
Thanksgiving
Wrap Up / Project
Reading period

Project presentations

around a little bit

Background Lectures

il adper HFresentaton

Reading / Presenting Papers

Project Proposals Due

Check-Ins / Office Hours in Class

Final Project

Project Reports Due




How do you get an A in CS 249r?

1. Paper Reviews — 20%

2. Paper Presentation — 20%
3. Class Participation — 10%
4. Final Project — 50%




What are the prerequisites for CS 249r?

1.CS 141 and/or basic computer architecture and digital design
2.CS 61/161 and/or a basic systems programming experience
3.CS 124 and/or a basic algorithms experience

. As such, we intend
to provide some background on all of the topics. That said, students may
find it helpful if they also have some background in some of the
algorithms employed in autonomous systems from classes such as CS
181/182 or AM 121. Please contact the instructor or teaching fellow if
you are interested in taking the course but are unsure about whether the
background you have is suitable.




Any quick nuts and bolts questions?




Autonomous Systems / Robotics is a BIG space

Autonomous Systems
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The goal for the next couple of lectures is to develop a high
level understanding of:

What is an autonomous system

Key problems for autonomous systems

Some of the most important (classes of) algorithms in robotics
The model based vs. model free tradeoff

The online vs offline tradeoff

The no free lunch theorem and the need for approximations

N o Uk w N

How computer systems / architecture design has and can play a
role in improving autonomous systems




Autonomous Systems / Robotics is a BIG space

Autonomous Systems
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© Key Takeaways:

1. When designing algorithms for robots you need to understand
the physical capabilities of the robot and you (potentially) need
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware




Autonomous Systems / Robotics is a BIG space

Autonomous Systems
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Perception is the processing of sensor data to
understand the world around the robot

Sensor Data
\>< r & descriptions of the
external world that are

———
|:> Perception |:> useful and not cluttered
with irrelevant

\_ J information (Marr, 1982)

Slide Credit: Todd Zickler CS 283




Perception is the processing of sensor data to
understand the world around the robot

Sensor Data
e 4 B descriptions of the
external world that are

|:> Perception |:> useful and not cluttered
with irrelevant

\_ J information (Marr, 1982)

® Geometric information
(3D shape, position)

Slide Credit: Todd Zickler CS 283




We can compute the depth to objects by using
geometry and physics

(and other Structured Waves e.g.,
Sonar, RADAR, etc.)

Unstructured Light (aka Cameras)

AL

Computer Usable
' ‘ Vision Data
' -




We can compute the depth to objects by using
geometry and physics




Stereo depth is such an important problem that Intel

has designed a custom chip!

USB3 Cap

-
X

S
\ 1 o
Vi
\ /
b

-

Glass Lens Mask Aluminum D430 RGB Heat Sink PCB + Aluminum
Front Module Components Back




Perception is the processing of sensor data to
understand the world around the robot

Sensor Data
e 4 B descriptions of the
external world that are

|:> Perception |:> useful and not cluttered
with irrelevant

\_ J information (Marr, 1982)

® Geometric information
(3D shape, position)

Slide Credit: Todd Zickler CS 283




Perception is the processing of sensor data to
understand the world around the robot

light

>< r N descriptions of the
external world that are

|:> COMPUTER useful and not cluttered

VISION with irrelevant

\_ J information (Marr, 1982)

® Geometric information
(3D shape, position)

Slide Credit: Todd Zickler CS 283




Perception is the processing of sensor data to
understand the world around the robot

light

>< r N descriptions of the
external world that are

[> COMPUTER useful and not cluttered

VISION with irrelevant

\_ J information (Marr, 1982)

® Geometric information
(3D shape, position)

° Dynamic information
(velocities)

Slide Credit: Todd Zickler CS 283




Perception is the processing of sensor data to
understand the world around the robot

light
e 4 B descriptions of the
COMPUTER external world that are

[> useful and not cluttered
VISION with irrelevant

\_ J information (Marr, 1982)

® Geometric information
(3D shape, position)

° Dynamic information
(velocities)

* Semantic information
(object, scene categories)

Slide Credit: Todd Zickler CS 283




Computer Vision is a hard problem




Computer Vision is a hard problem

What color(s) are this shirt and these pants?

Slide Credit: Hamilton Chong




Computer Vision is a hard problem

Slide Credit: Hamilton Chong




Computer Vision is a hard problem

Areas ofthe image A and B are the same color o=

Adelson 1995




Computer Vision is a hard problem

A rectangle of the 2ame color has been drawn connecting the two -

Areas ofthe image A and B are the same color =) :
areas of the image

Adelson 1995




Computer Vision is a hard problem

Sinha et al.: Face Recognition by Humans: Nineteen Results Researchers Should Know About




Computer Vision is a hard problem

ka(A) Km(A) Ki(A)

Retinal color :/ Ra(WHA)AA A

X

C(g()\)) — (CSE Gy, & Cf.) < , } \

.f. il \

e

@ .LMS senstivity functions
N VAaN

Perceived color

Object color

Color names

et
PR

Slide Credit: Todd Zickler CS 283




Computer Vision is a hard problem

ks(A) km(A) k()

Retinal color s = f koA =

[
c(6(N) = (cssemrcr) < EEES

LMS senstivity functions

So how can we
represent this

with an
algorithm?

Perceived color
Object color

Color names

Slide Credit: Todd Zickler CS 283




Computer Vision is a hard problem

Retlnal COIOI’ By = [ks{,\)i”()\)d,k k;{:) L So how can we

represent this

2N)) = (Cosem, cr) 8 | fﬁ T

algorithm?

Perceived color
ObjeCt CO[OY Well lets start by

building up some

OOIO( names intuition for how

to find an edge!

Slide Credit: Todd Zickler CS 283




Edges are where discontinuities occur in images

* Depth discontinuity

» Surface orientation
discontinuity

» Reflectance discontingi
change in surface materta
properties)

* [llumination discontinuity (e.g.,
shadow)

Slide credit: Christopher Rasmussen




Edges are where discontinuities occur in images

* Depth discontinuity

» Surface orientation
discontinuity

» Reflectance discontingi
change in surface materra
properties)

* [llumination discontinuity (e.g.,
shadow)

Key insight: discontinuities are

where the derivative is high!

e e

Slide credit: Christopher Rasmussen




Noise will corrupt our derivative computation

No smoothing




“Spatially local averaging” reduces noise

No smoothing




The traditional Computer Vision approach is through
convolution of linear filters

So what is a convolution of a linear filter?

0[1[1]|T]840)07.

ofloftfrfrjofot.. 1]4]3 4 1]
ofofofififi]o 1{o]1 1]214]3]3
olofo]T]+fo]0T«_|o]1 = [1{2[3]4]1
olof1|t]ofo[0t-. |1]0o]1 1[3]3]1]1
ol1|t]ofofo]o 313]1]1]0
1[1{ofofofo]o

I K I+K




“Spatially local averaging” reduces noise

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x50=1

« B

No smoothing




“Spatially local averaging” reduces noise

e 20 17 TR - Ok so lets smooth and then
2702 P et B take a derivative!

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5 06=1

No smoothing o=2




“Spatially local averaging” reduces noise

1

_ (m2+g

e
202

20

0.003
0.013
0.022
0.013
0.003

0.013
0.059
0.097
0.059
0.013

0.022
0.097
0.159
0.097
0.022

0.013
0.059
0.097
0.059
0.013

0.003
0.013
0.022
0.013
0.003

5x5 06=1

No smoothing

Ok so lets smooth and then
take a derivative!

', 1o

It turns out through math that
two convolutions is the same
as the convolution of the
product of the filters — so lets
just apply the derivative of a
Gaussian filter!




Derivatives increase noise so we can find edges using a
derivative of Gaussian Filter

Applying the first derivative of Gaussian




Derivatives increase noise so we can find edges using a
derivative of Gaussian Filter

Applying the first derivative of Gaussian

But not all edges are
vertical or horizontal
what can we do?




Derivatives increase noise so we can find edges using a
derivative of Gaussian Filter

Applying the first derivative of Gaussian




Various filters can be used to extract features to e.g.,
stich panoramas

Step 1: extract features

Step 2: match features




Various filters can be used to extract features to e.g.,
stich panoramas

Step 1: extract features
Step 2: match features
Step 3: align images




But what features should we use for object
recognition?

person

‘person

s il i
i::h!ﬁ"! 1C1

= nower drill
=1 motorcycle




The ImageNet Challenge

I person

= power drill

!person

helmet

motorcycle

~

The ImageNet Challenge
provided 1.2 million
examples of 1,000
labeled items and
challenged algorithms to
learn from the data and
then was tested on

Qwother 100,000 imagey




The ImageNet Challenge

A person / \

In 2010 teams had
75-50% error

- T oo In 2011 teams had
> 75-25% error

N /

- power drill

motorcycle




The ImageNet Challenge

A person / \

In 2012 still no team
had less than 25%
error barrier except
AlexNet at 15%

N /

I person

!person

helmet

- power drill

motorcycle




Deep learning automates the design, selection and
extraction of features, with amazing results

AlexNet: the first widely successful application of deep learning

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design, selection and
extraction of features, with amazing results

Trad|t|onal
Feature
Input Extractor Features Output
Algortthm

Traditional Computer Vision Flow

Input AlexNet Output

Deep Learning Flow




Deep learning automates the design, selection and
extraction of features, with amazing results

AlexNet: the first widely successful application of deep learning

1
Input
_ Max
Stnde
28\l ot 2 act Fea
a U U

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design, selection and
extraction of features , with amazing results

AlexNet: the first widely successful application of deep learning

Looks like some edges
and interest points and
important color patterns

Extract Features
w/ Convolution

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design, selection and
extraction of features, with amazing results

AlexNet: the first widely successful application of deep learning

n
&
1 3 |
R 13 27 A 13
224 | image :
. ) Max e Max
. pooling poaling

=24 4

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design, selection and
extraction of features, with amazing results

AlexNet: the first widely successful application of deep learning

; ! densa I
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design, selection and
extraction of features, with amazing results

AlexNet: the first widely successful application of deep learning

Classify

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design, selection and
extraction of features, with amazing results

30.0%
25.0%
20.0%
15.0%
10.0%

5.0%

0.0%

2010

Key Takeaway: the computer is better than

us at determining what features are
salient and weighting them appropriately!

"1 Traditional
B CNN

2011 2012 2013 2014 2015

https://www.researchgate.net/figure/Historical-top5-error-rate-of-the-annual-

winner-of-the-ImageNet-image-classification fig7 303992986




Google can now even automatically caption images!

Human captions from the training set

A cute litle in a heart
drawn on a sandy

Automatically captioned

-, walking next to a
little on iop of a

& large brown next to a
small looking out a window.




The latest and greatest detectors can now find
thousands of images in real-time

. *UJ*«. oL ALV

starging

A

40| MgV

[~




And can be used to track objects in real time

AUTONOMOUS
SHOT ON




What might be the downside to using NNs?




For one, NNs can be tricked by adversarial markings

Tencent Keen Security Lab Experimental Security Research of Tesla Autopilot

THE RESERREME] £ EXF *




For one, NNs can be tricked by adversarial markings

Ackerman “Hacking the Brain With Adversarial Images”

“panda” “gibbon”

57.7% confidence Q9.3% confidence




For one, NNs can be tricked by adversarial markings

Ackerman “Hacking the Brain With Adversarial Images”

“panda” There is “gibbon”
57.7% confidence the world semantically 99.3% confidence

just mathematically




Second,

expensive to train and compute

good) NN models are (often) large and

Top-1 accuracy [%]

NASNet-A-Large
SE-ResNexXt-101(32x4d)
80 & !ncepllgn ResNet-v2 SENet-154
= s 7 nception-v. 2
Bienashis=Xibidd) Xception WllalPathiNet-98: J‘PHE”NE"”’
SE-ResNet-101)" eset-152 ' ResNeXt-101(64xdd)
SE-ResNet-80 _ Inception VE%?XMUHSEX ) FlieF192
DenseNet-201@@) ‘emNet e sNet-101 ' FB-ResNet-152
@ .ResNet-SD ..Cafle-ResNEl-1D1 VGG-19. BN
755 | DualPathNet-68 DenssNet-169 VGG-16_BN
DenseNet-121
® NASNet-A-Mobile
BN_Ime.pﬂun @ ResNet-34 VGG-13_BN
® MobileNet-v2 VeG-11 BN
VGG-19
70 4 ResNet-18 i
e ©® VGG-16
MabileNet-v1
VGG-13
¥ shuffleNet VGG-11
.GnnqLeNel
iM 5M 10M 50M 75M  100M 150M
SqueezeNet-v1.1
® SqueezeMet-v1.0
. AlexNet
55 T T T T
0 5 10 15 20

Operations [G-FLOPs]

25

NASNet-A-Large

SENet-154
pe 1) SE—ResNeXt 101 (32%dd)
Inception-ResNet-v2({")

DualPathNet-131@)
SE-

Reshla;(% 101(32x4d)
* &
énss Nel ‘i* ?
DenseNet-201 B—RBSNll 152

Densetiet-169@ DualPathMW

DenseNet-121 .

NASNai-A-Mobile @

[Bianco et. al. Benchmark Analysis of Representative Deep Neural Network Architectures]




For this reason NNs (often) need accelerators to run
online (and this is a very active area of research)

Link Clock! Core Clock
ink Cloc . ore Cloc DCNN Accelerator
14x12 PE Array

On-Chip | Spatial PE Array

Buffer |

. Filter

-D{];[: »
i Input Image B”ﬁerm
=l
1OSKBM

Off-Chip DRAM
64 bits

Eyeriss Architecture Die Photo

Can run in real time (35fps) at a 10X energy

reduction over a mobile GPU (TX27?)!




Key Takeaways:

1. As of today it seems like that automate the design and
summary of salient features via convolution are the way to go

* But/and will need specialized NN running on
to get them small enough to fit on small power constrained
autonomous systems (e.g., small drones)

* And we will need to find ways to

2. Also, other more targeted problems such as
seem to need accelerators!




Autonomous Systems / Robotics is a BIG space

Autonomous Systems
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o Mapping & Localization is the process of using perception
information to understand where a robot is in the world

 a 41 AM 100% -

* Manhattan Bridge

0.2ny Manhattan Bridge Upper Roadway




@) GPS provides a good idea of where a robot is globally...

LLIT T Bea G417 AR

* Manhattan Bridge

0.2 Manhattan Bridge Upper Roadway

i

GPS
Module

8 min ¢
X 2.2mil- 4:59 PM F




@ .. butisn’t very accurate locally and requires a map

GPS o
Module R Two Problems

qu . e e ,.ﬁ? . GPS is only accurate to

B =

b e . GPS relies on already
- having a perfect map of
the environment
(unrealistic often)




@ .. butisn’t very accurate locally and requires a map

Localization Problem Two Problems

1. GPSis only accurate to
O(10m)

2. GPSrelies on already
having a perfect map of
the environment
(unrealistic often)

Mapping Problem




@ .. butisn’t very accurate locally and requires a map

Localization Two Problems

Problem 1. GPSis only accurate to
O(10m)

2. GPSrelies on already
having a perfect map of
the environment
(unrealistic often)

Mapping Problem




o We can use cameras and other sensors to measure the local
environment but these sensors are also noisy




@ So what can we do?

Track the Belief State B, B; = p(x; = X|Past States and Sensor Info)




@ Let’slook at a concrete example of this in action

Initialize with uniform probabilities everywhere

Probabilities |
0 1 Example from Michael Pfeiffer




@ Let’slook at a concrete example of this in action

Take initial measurement and update
Lighter grey = less likely erroneous readings

Probabilities | .
0 1 Example from Michael Pfeiffer




@ Let’slook at a concrete example of this in action

Probabilities | s
0 1 Example from Michael Pfeiffer




@ Let’slook at a concrete example of this in action

Probabilities | s
0 1 Example from Michael Pfeiffer




@ Let’slook at a concrete example of this in action

Probabilities | s
0 1 Example from Michael Pfeiffer




@ Let’slook at a concrete example of this in action

Probabilities | s
0 1 Example from Michael Pfeiffer




One approach is to model the probability of being in a given

o state with a Hidden Markov Model

ee st aE e B = p(X| Xy, Ep - Er—q)

Hidden Markov Model (HMM)
States X update in time but we only observe the effects E

Report the mean of
the Belief State
(which is a probability
distribution) as our
current best estimate
of the state




o The Kalman Filter updates the belief state (a probability
distribution) for the passage of time and for evidence

Time Update @ @

P(x¢yqlx0, €1 - 00) = jP(xt|x0,el @) * P(xpiq]|x:)

Based on a model of
physics usually

Evidence Update

Based on a model of
the sensor data
usually

P(x¢41lx0, €1 - €p41) & Jp(xt+1|x01 e1...et) * P(epyq|xps1)




o The Kalman Filter updates the belief state (a probability
distribution) for the passage of time and for evidence

Time Update @ @

P(x¢yqlx0, €1 - 00) = jP(xt|x0,el @) * P(xpiq]|x:)

Evidence Update

P(xt411x0, €1 - €41) JP(Xt+1|xo» ey ...et) * P(eryq|Xry1)

There are a variety of

ways to compute this
(and we’ll highlight 4)

usually




@ There are four popular ways to compute this in practice

van der Merwe and Wan (2001)
Actual (sampling for clarity)

.~ covarlance
P ’

1. Pass the full belief
PDF through

nonlinear

- Most accurate but
computationally very

equations for the
motion update
(physics) and the
sensor update

expensive (often
intractable)




@ There are four popular ways to compute this in practice

Berkely Al Material and Scott Kuindersma

Particle Filter

2. Pass many

samples through the Elapse

nonlinear equations & (o012 ¢

for the motion update o - [> o |82 Can be very accurate
(physics) and the o but also computation-
sensor update and Weight <7 ally expensive (lots of
use the samples as a :

discrete o| e a - particles)
approximation of the o |o% q ’

probability : :

distribution Resample




@ There are four popular ways to compute this in practice

Dieter Fox




@ There are four popular ways to compute this in practice

What if we
don’t want to @ @ P(xti1]xg, €1 .o€p) = fP(xt|x0,el w€e) ¥ P(cpyq|x )

sample?




@ There are four popular ways to compute this in practice

Lets do some
math for a @ @ P(xti1]xg, €1 .o€p) = fP(xt|x0,el ) * P(xpiq|x;)

minute




@ There are four g e this in practice

Lets do some .
math for a NG . tlxo, eq eg) * Popyq[x; )
minute N




@ There are four g e this in practice

Lets do some . &
math for a NG t|Xo0, €1 - €r) * P(xpyq|xe)
minute » LI

| promise Its

not that bad!




@ There are four g

Lets do some
math for a
minute

L INSTERDLOF. D¢
——CHOCOLATE CHIE, -




@ There are four popular ways to compute this in practice

http://www.cs.columbia.edu/~liulp/pdf/linear_normal_dist.pdf

Lets do some
math for a @ @ P(x¢41lx0,€1 - €p) = jP(xt|x0,el ) * P(xpyq|x: )

minute

Suppose x ~ N (jt5, ;) and y = Ax + b, where b ~ N (0, X).
py = Ely]=E[Ax+b| = AFE[x]|+ E[b] = Ap,,
¥, = Var(Ax+ b)= Var(4x) + Var(b) = AX, A" + %,

Well if we represent the transition from one state to the next by a linear equation

(just linearize physics) and represent P(x) as Gaussian then we can just use this simple
linear transformation to do all of the math super fast!




@ There are four popular ways to compute this in practice

van der Merwe and Wan (2001)
Extended Kalman Filter - EKF

3. Assume the belief
PDF is Gaussian
and pass it through

. ) Simplest and least
linearized i

accurate as assumes

equations for the
motion update
(physics) and the
sensor update

Gaussian + linear




@ There are four popular ways to compute this in practice

van der Merwe and Wan (2001)
Unscented Kalman Filter - UKF

4. Assume the belief PDF s Y
is Gaussian and \y.
pass limited o
samples through the !
nonlinear equations p=Hz Moderately accurate
{g;i:iecsr;];):g?huepdate we Mggoﬁig;}g}sgm but assumes Gaussian
sensor update and e e

reconstruct the !
Gaussian on the other =

S | d e UT covariance




@ There are four popular ways to compute this in practice

L T T " R [ Y T

* + +  Moisy observation
EKF estimate

VK F estimate

|
i
N

Position x

Time steps

Hassanzadeh and Fallah 2008




@ There are four popular ways to compute this in practice

Position x

el ! ! ! 7| — Rl state
ol * * +  MNoisy observation
—— — EKF estimate
o JKF estimate

Hassanzadeh and Fallah 2008

(d) (e)

Fig.1: Two illustrations of fundamental problems associated with the UKF in the
presence of the inequalities associated with contact. When sample points are generated
(a and d) samples are either infeasible or have different contact modes than the mean
estimate. In the first sequence (a-c) the resulting estimate (c) is infeasible even though
all of the samples are feasible. In the second sequence (d-f) the resulting estimate (f)
is feasible, but has a contact mode that is different from any of the individual sample
points. In our experience this is the more common behavior, biasing the estimate away

from the contact manifold.
Varin and Kuindersma 2018




@ There are four popular ways to compute this in practice

Position x

el — Pl state
ol * * +  MNoisy observation
—— — EKF estimate
o JKF estimate

Hassanzadeh and Fallah 2008

is helpful to reduce computation but

(d) (e)

Fig.1: Two illustrations of fundamental problems associated with the UKF in the
presence of the inequalities associated with contact. When sample points are generated
(a and d) samples are either infeasible or have different contact modes than the mean
estimate. In the first sequence (a-c) the resulting estimate (c) is infeasible even though
all of the samples are feasible. In the second sequence (d-f) the resulting estimate (f)
is feasible, but has a contact mode that is different from any of the individual sample
points. In our experience this is the more common behavior, biasing the estimate away

from the contact manifold.
Varin and Kuindersma 2018




There are four popular ways to compute this in practice

: . , , Most accurate but
Pass the full belief PDF through nonlinear equations for the motion :
computationally very

update (physics) and the sensor update expensive (often intractable)

Pass many samples through the nonlinear equations for the Can be very accurate but can

also be computationally

motion update (physics) and the sensor update and use the samples as
expensive (Particle Filter)

a discrete approximation of the probability distribution




There are four popular ways to compute this in practice

Pass the full belief PDF through nonlinear equations for the motion
update (physics) and the sensor update

Pass many samples through the nonlinear equations for the
motion update (physics) and the sensor update and use the samples as
a discrete approximation of the probability distribution

Assume the belief PDF is Gaussian and pass it through linearized
equations for the motion update (physics) and the sensor update

Assume the belief PDF is Gaussian and pass limited samples

through the nonlinear equations for the motion update (physics) and
the sensor update and reconstruct the Gaussian on the other side

Most accurate but
computationally very
expensive (often intractable)

Can be very accurate but can
also be computationally
expensive (Particle Filter)

Simplest and least accurate as
assumes linear (Extended
Kalman Filter - EKF)

Moderately accurate but
assumes Gaussian (Unscented
Kalman Filter - UKF)




@ But what if we don’t have a map of the environment?

Localization Problem

Mapping
Problem

Two Problems

1. GPSis only accurate to

2.

O(10m)

GPS relies on already
having a perfect map of
the environment
(unrealistic often)




o But what if we don’t have a map of the environment? Enter
Simultaneous Localization and Mapping (SLAM)

Essentially just additionally tracking the

belief of landmarks in the environment
(walls, buildings, trees, etc.)

Ho and Newman 2006




o But what if we don’t have a map of the environment? Enter
Simultaneous Localization and Mapping (SLAM)

Essentially just additionally tracking the The real hard part is figuring out when you have
belief of landmarks in the environment been somewhere before as measurements drift
(walls, buildings, trees, etc.) (the Ioop closure problem)

) I
o I, L

L-—..—-..-—n-r——-———ﬂ'—_" ‘ Ho and Newman 2006




SLAM with Loop Closure




Mapping can even be done in 3D!

Standard Deviation (mm)

< o
StarlETH N | o
03/2014 Autonomous Systems Lab E'"ZUFJ'Ch




o However building (and even storing) maps leads to a huge
memory problem especially on small mobile systems

3D grid at 10cm resolution was

5058.76 MB (over 5 GB)

“Octomap” Hornung et. al. 2012




o However building (and even storing) maps leads to a huge
memory problem especially on small mobile systems

“Octomap” Hornung et. al. 2012

3D grid at 10cm resolution was
5058.76 MB (over 5 GB)

Oct-tree w/ Maximum
Likelihood metric was able to
compress that to 230.33 MB




However building (and even storing) maps leads to a huge
memory problem especially on small mobile systems

Fig. 2 Example of an octree storing free (shaded white) and occupied
(black) cells. The volumetric model is shown on the left and the corre-
sponding tree representation on the right.

Fig. 3 By limiting the depth of a query, multiple resolutions of the
same map can be obtained at any time. Occupied voxels are displayed

Hoctomap" Hornung et. al. 2012 in resolutions 0.08 m, 0.64, and 1.28 m.




But how would we run localization online in a drone
that is too small to carry fancy sensors?




You can estimate the velocity of an object through
matching interest points (Visual Odometry)...

Remove outliers + .
Add features as needed + i

Update stereo matching

o Tracked feature
¢  Newly added feature




@ ...and then build a custom chip to fit it onboard!

http://navion.mit.edu

LN

__Jgature = __ -

Navion




@ Key Takeaways:

1. The Kalman/Particle Filter uses probability to solve the
localization problem but modeling and/or approximations
are needed for it to run efficiently online

2. Mapping quickly becomes a memory storage problem

3. Constrained form factors (aka tiny drones) will need novel
accelerators to allow for autonomy




Your homework for next class

E;er;ﬁz?)ds for Intro to Robotics (Planning and e

Computer Architeecture to Close the Loop in Real-time Optimization:
https://ieeexplore.iece.org/document/7402937

The Architectural Implications of Autonomous Driving: Constraints and
Acceleration: hittps://web.eecs.umich.edu/~shihclin/papers/AutonomousCar-ASPLOS18.pdf & =

A Summary of Team MIT's Approach to the Virtual Robotics Challenge:
https://agile.seas.harvard.edu/files/agile/files/vrc entry.pdf




Your homework for next class

We have posted a tentative paper list
to Canvas (along with PDFs and links)

Pre-Reads for Intro to Robotics (Planning S5 E1asteRiallala=1e o0 iR U allela R o] o1 R o1t
Control) want as we will be allocating them in
a week or two!

If you have an idea for a paper not on
the list please run it by us and we
may be willing to swap it in!

Computer Architeecture to Close the Loop in Real-time Optimization:

https://ieeexplore.iece.org/document/7402937

The Architectural Implications of Autonomous Driving: Constraints and

Acceleration: hittps://web.eecs.umich.edu/~shihclin/papers/AutonomousCar-ASPLOS18.pdf & =

A Summary of Team MIT's Approach to the Virtual Robotics Challenge:
https://agile.seas.harvard.edu/files/agile/files/vrc entry.pdf




’d love any Feedback!

http://bit.ly/CS249-Feedback-L1
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CS 249r: Special Topics in Edge Computing

Intro to Autonomous Systems / Robotics Part 2

103 120 @S;

"HIS PATH-PLANNING MAY BE Brian Plancher
SUB-OPTIMAL, BUT IT'S 60T FLAIR." Fall 2019




Feedback from last class

How was the pace of class today? How was the depth of the content covered today?

@® Too fast @ Way too high level
® A little fast @ A little too high level
@ Justright @ Just right

@ A little slow @ A little too detailed
@ Too slow @ \Way too detailed

1. Pace is a tad fast

2. Get more technical/depth




Also thanks for the open
Feedback from last class ended feedback!

How was the pace of class today? How was the depth of the content covered today?

WV

® Too fast
@ A little fast
@ Justright
A @ A little slow
® Too slow

1. Pace is a tad fast

2. Get more technical/depth

@ Way too high level
@ A little too high level
@ Just right

@ A little too detailed
@ \Way too detailed




Your homework for next class

Pre-Reads for Intro to Domain
Specific Architectures

We have posted a tentative paper list
to Canvas (along with PDFs and links)

Start to think about which papers you
want — | will send a link to vote for
preferences in a week or so!

Is dark silicon useful? Harnessing the four horsemen of the coming da
apocalypse: https://ieeexplore.ieee.org/document/624164/ &

Turing Lecture: A New Golden Age for Computer Architecture:

https://californiaconsultants.org/wp-content/uploads/2018/04/CNSV-1806-

If you have an idea for a paper not on
the list please run it by us and we
may be willing to swap it in!

Patterson.pdf & (watch the lecture its great!)

e




Your homework for next class

Were going to use (linked on Canvas and
Pre-Reads for Intro to Dom: https://www.eecs.harvard.edu/cs249r/) for these
Specific Architectures for Monday — you will get an email from

with a Password to access the site. (I am
giving him the full roster as of today)

Is dark silicon useful? Harnessing the four horse
apocalypse: https://ieeexplore.ieee.org/docume

Turing Lecture: A New Golden Age for Computer Architecture:
https://californiaconsultants.org/wp-content/uploads/2018/04/CNSV-1806-
Patterson.pdf & (watch the lecture its great!)

e




Your homework for next class

Click on a paper to access that paper’s page

CS 249r ‘ brian_plancher@g. harvard.edu Profle  Help  Swqoout

() | searcn

Search: [(All 5 v| | Search Administration
Seltings
Users
Assignments
Mail
Action log
Conference information
Program committes

Reviews: The average PC member has submitted 0.0 reviews. (details graphs)
As &n agminisrator, you may review any submiied paper

A i ol lewing
» Recent activity

Your Submissions: Start new paper (Mo deadling)

#1 Is Dark Silicon Useful? Harnessing the Four Horsemen of the Coming Dark Silicon Apocalypse & Submitted
#2 A New Golden Age for Computer Architecture: WATCH THE VIDEQ LINKED ON SLIDE 1 & Submitted

[ ERiERrvE 18 |




Your homework for next class

CS 249r Home J brian_plancher@g.harvard.edu Profile  Help - Signout

#1 Is Dark Silicon Useful? Harnessing_the Four Horsemen of the Coming Dark
Silicon Apocalypse

Main Edit " Review ‘f‘\'ﬁgn Your submissions #2# a EjAII} | Search
g Eat Submitted
#M_Sept_16 &
- A Submission (412kB) ® 10 Sep 2019 2:37.22am EDT
¥ Email notification gt = . " .
SECLID recive Bl S Lt ¥ 6490d1b1111584997d 10fdf0bb431943b0caesBe Th e n C | | C k Wr | te
reviews and comments. Ab

stract Authors
i i ‘ ‘ 0 ”

PC conflicts N/A + Hidden for blind review
Brian Plancher reVI eW to O p e n
;r?:c;?:;‘d " ' You have used administrator privileges to view and edit reviews for this paper. u p t h e fo rm tO

i (Unprivileged view)
- submit a “review”
» Shepherd = i Rakof this paper.
REView prEference . Add Comment

+ Add Comment

HotCRP v2 100




Your homework for next class

Are you a(n):
| (Your choice here) v

What is your field of expertise?
(Your choice here) ¥

If you were scoring this paper for a conference how would you rank it's overall merit?
(Your choice here) ¥

What was the main contribution of this paper?

Whst i youfn confusing about s paper? Then just fill it

. out and submit
What did you like about the writing? and you' | be

y good to go!

What did you dislike about the writing?

Any cther comments?

| Submit review | ‘ Save as draft |
{admin only) {admin only)




The goal for the next couple of lectures is to develop a high
level understanding of:

What is an autonomous system

Key problems for autonomous systems

Some of the most important (classes of) algorithms in robotics
The model based vs. model free tradeoff

The online vs offline tradeoff

The no free lunch theorem and the need for approximations

N o Uk w N

How computer systems / architecture design has and can play a
role in improving autonomous systems




Autonomous Systems / Robotics is a BIG space

Autonomous Systems

Mechaymsm e Mappmg &
Design Localization

Planning




© Key Takeaways:

1. When designing algorithms for robots you need to understand
the physical capabilities of the robot and you (potentially) need
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware




Key Takeaways:

1. As of today it seems like CNNs that automate the design and summary
of salient features via convolution are the way to go

» But/and will need specialized NN running on specialized accelerator chips to get them small enough
to fit on small power constrained autonomous systems (e.g., small drones)

e And we will need to find ways to secure them against attacks!

2. Also, other more targeted problems such as Stereo Depth seem to need
accelerators!




@ Key Takeaways:

%(D—»%(D—»%(D—»--—»

1. The Kalman/Particle Filter uses probability to solve the localization

problem but modeling and/or approximations are needed for it to
run efficiently online

Navion

2. Mapping quickly becomes a memory storage problem

3. Constrained form factors (aka tiny drones) will need novel
accelerators to allow for autonomy




Autonomous Systems / Robotics is a BIG space

Autonomous Systems

Mechaymsm e Mapplng &
Design Localization

o o™ Vo
Y

Hardware Focus<« @ciqoiiiicis Bl z1.= »Software Focus

Planning




o Planning is the process of computing an action plan for a
robot based on the previously computed map




o Planning is the process of computing an action plan for a
robot based on the previously computed map

Start State

Goal State




o Planning is the process of computing an action plan for a
robot based on the previously computed map

Start State

Goal State




o Planning is the process of computing an action plan for a
robot based on the previously computed map

Start State Before we can
think about how to
compute this we
need to figure out
in what state space

are we planning?

Goal State




© Spaces and Transformations (aka where are we planning?)

* Task space: the 6D workspace of the robot

e E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object




© Spaces and Transformations (aka where are we planning?)

* Task space: the 6D workspace of the robot

e E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

* Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector g € R"




© Spaces and Transformations (aka where are we planning?)

* Task space: the 6D workspace of the robot

e E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

* Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector g € R"

* Forward kinematics: maps g to outputs in
task space (e.g. hand position)

* |nverse kinematics: maps task space poses
to configuration space




© Spaces and Transformations (aka where are we planning?)

* Task space: the 6D workspace of the robot

e E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

* Configuration space: the n-dimensional
space of joint angles + robot world position

* Vector g € R"

* Forward kinematics: maps g to outputs in
task space (e.g. hand position) Q: Are forward and

inverse kinematics 1
to 1 operations?

* |nverse kinematics: maps task space poses
to configuration space




© Configuration Space

Q1: What is the configuration
space state for this
omnidirectional robot?




© Configuration Space

Q1: What is the configuration
space state for this
omnidirectional robot?

Al: (x,y) position of the
center of the robot




© Configuration Space

Q2: How can we map this
robot’s world into
configuration space?




© Configuration Space

Well we want the robot to
become a single (x,y) point




© Configuration Space

So we need to inflate the
obstacles accordinly




© Configuration Space

- Insight: mapping task space
obstacles and goals into
configuration space allows us

to plan a path for a single
point instead of worrying
about a full robot




© Configuration Space

How can we map this robot
and its world into

configuration space?

Workspace




© Configuration Space

Workspace




© How to use configuration space in practice

If we map the obstacles into configuration space we
can check whether the configuration point, g, is in an
obstacle and we have a unique plan for the robot

* Problem: mapping obstacles into configuration
space is hard

k(

‘:]

Initial

'
@

Workspace

q/
Initial -

<« Goal

A

.

Configuration space




© How to use configuration space in practice

If we map the obstacles into configuration space we
can check whether the configuration point, g, is in an
obstacle and we have a unique plan for the robot
* Problem: mapping obstacles into configuration
space is hard
Better approach: use forward kinematics to check
task space obstacle collisions!

Treat the collision checker as a

black box function evaluator!

b ‘ Initial

Workspace

Configuration space




© How to use configuration space in practice

If we map the obstacles into configuration space we
can check whether the configuration point, g, is in an
obstacle and we have a unique plan for the robot
* Problem: mapping obstacles into configuration
space is hard
Better approach: use forward kinematics to check
task space obstacle collisions!

* No free lunch — Now each collision check
requires full kinematics and not a simple lookup

k(

‘:]

Initial

'
@

Workspace

q/
Initial -

<« Goal

A

.

Configuration space




© Planning in Configuration Space

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations g € R® Actions: Ag Transition: ¢ <+ g+ Agq
q




© Planning in Configuration Space

Start State

Goal State

q € R®: (x,y,2,0,0,9)

Goal: Find shortest collision-free gt from start to goal

States: configurations g € R® Actions: Agq Transition: ¢ <+ g+ Agq
q




© Planning in Configuration Space

One approach is to discretize the statespace (grid it)
and use graph search (think A* which is known fast)

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations g € R® Actions: Aq Transition: ¢’ + g+ Agq




© Planning in Configuration Space

One approach is to discretize the statespace (grid it)

and use graph search (think A* which is known fast)

Start State

Unfortunately if we use say 100 discrete steps in
each direction we get:

S| = 100°

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations g € R® Actions: Aq Transition: ¢’ + g+ Agq




© Planning in Configuration Space

One approach is to discretize the statespace (grid it)

and use graph search (think A* which is known fast)

Unfortunately if we use say 100 discrete steps in
each directign w :

(2 ankles + 2 knees + 2
hips + 2 shoulders + 2

Goal: Find shortest collision-free path elbows + 4 fingers + pose
of com) = ~20 variables

States: configurations g € R?Y Actions: A




© Planning in Configuration Space

One approach is to discretize the statespace (grid it)

and use graph search (think A* which is known fast)

Unfortunately if we use say 100 discrete steps in
each direction we get:

S| = 100%°

Curse of Dimensionality!

Goal: Find shortest collision-free path from start to goal

States: configurations g € R?°® Actions: Aq Transition:q < g+ Agq




© Planning in Configuration Space

So if we can'’t explicitly
form the graph and

Start State

search the configuration
Goal State space what can we do?

Goal: Find shortest collision-free path from start to goal

States: configurations g € R® Actions: Aq Transition: ¢’ + g+ Agq




© Planning in Configuration Space

& . :
Start State What if we incrementally
build up a path toward the
oal?
\g

Goal State

~

)

Goal: Find shortest collision-free path from start to goal

States: configurations g € R® Actions: Aq Transition: ¢’ + g+ Agq




© Planning in Configuration Space

Random Search

Machine Learning

1 Actuators

Local Search




© Rapidly Exploring Random Trees (RRTs)

One of the most famous robot motion planning
algorithms is
[Lavalle & Kuffner]

The main idea is to to
an entire state space to find a
path from a given start location to the goal.




Randomness encourages exploration

Key idea: uniform random sampling in configuration space is
actually a heuristic that encourages exploration!

To see this we use Voronoi regions

Def: Voronoi region is the set of points in space that are closest to a
particular node in the tree:




© Randomness encourages exploration
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© Randomness encourages exploration




© Rapidly Exploring Random Trees (RRTs)

Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
« Samplestatess €S = R"
until s is collision-free
 Find closest state sc € T
* Extend sctoward s
* Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal
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state tree T)
e Samplestatess €S = R"
until s is collision-free
* Find closest state sc € T
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 Add resulting state s’to T
e Repeat until T contains a
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© Rapidly Exploring Random Trees (RRTs)

Algorithm (input: So, Sgoal, initial
state tree T)

Sample states s € S = R"
until s is collision-free
Find closest state sc € T
Extend Sc toward s

Add resulting state s'to T
Repeat until T contains a
path from So to Sgoal

Sgoal

Se
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© Rapidly Exploring Random Trees (RRTs)

Algorithm (input: So, Sgoal, initial
state tree T)
e Samplestatess €S = R"
until s is collision-free
* Find closest state sc € T
 Extend sctoward s
 Add resulting state s’to T
e Repeat until T contains a
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© Rapidly Exploring Random Trees (RRTs) [ e

off sample vs.

computational efficiency

Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
e Samplestatess €S = R"
until s is collision-free
* Find closest state sc € T
 Extend sctoward s
 Add resulting state s’to T
e Repeat until T contains a
path from So to Sgoal
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© Rapidly Exploring Random Trees (RRTs)

Sgoal

Algorithm (input: So, Sgoal, initial
state tree T)
e Samplestatess €S = R"
until s is collision-free
 Find closest state sc € T
 Extend Sctoward s
* Addresulting state S’to T
* Repeat until T contains a
path from so tg

It will always find a solution because

itis

se




© Rapidly Exploring Random Trees (RRTs)




© Rapidly Exploring Random Trees (RRTs)




© RRTs often works really well in practice




RRTs often works really well in practice

204 J. Leonard et al.

Obstacle collision

Feasible paths =>Infeasible path

Road departure

il : => |nfeasible path
Divider cross

=> |nfeasible

Car

Fig. 22. Iustration of RRT Motion planning. Each leaf of the tree represents a stopping lo-
cation, The motion control points (in blue) are translated into a predicted path. The predicted
paths are checked for drivability (shown in green and red).




© Questions about the RRT algorithm?

Algorithm (input: So, Sgoal, initial
state tree T)

Sample statess € S = R"
until s is collision-free
Find closest state sc € T
Extend sc toward s

Add resulting state s'to T
Repeat until T contains a
path from So to Sgoal

Sgoal

Se




© But we can get some WEIRD outputs...




© But we can get some WEIRD outputs...




© But we can get some WEIRD outputs...

RRT is not optimal (cost of paths are not considered)

" Thisis an example of “




© We solve this problem with RRT*

The big trick:
 incrementally “re-wiring” the tree to
keep locally optimal paths




© \We solve this problem with RRT*

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sc € T

Extend sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to So -> Smin -> S’

Add edge Smin ->S’to T

Check path cost through s’to all statesin s €
Snear, if any are lower than existing path cost to
S, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal
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© \We solve this problem with RRT*

RRT* (input: So, Sgoal, initial state tree T)

Sample states s € S = R"® until s is collision-
free (often goal directed)

Find closest state sSc € T

Extend Sc toward s resulting in state s’

Find all Snear € T within a distance dto S’

Find Smin € Snear, that has the lowest path cost
to S0 -> Smin -> S’

Add edge Smin ->s’to T

Check path cost through s’to all statesins €
Snear, if any are lower than existing path cost to
s, then “rewire” tree to include edge s’-> s
Repeat until maximum iterations reached and T
contains a path from So to Sgoar

® Sgoal

SC ---------------- nearest” states




© \We solve this problem with RRT*

® Sgoal

® Sgoal




© \We solve this problem with RRT*

® Sgoal

® Sgoal

Nearest radius size is
another sample vs.
computational
efficiency decision!




© RRT*

[Karaman & Fazzoli Sampling-based Algorithms for Optimal Motion Planning]
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Fig. 1. A Comparison of the RRT* and RRT algorithms on a simulation example. The tree maintained by the RRT algorithm is shown in (a)-(d) in different
stages, whereas that maintained by the RRT* algorithm is shown in (e)-(h). The tree snapshots (a), (e) are at 1000 iterations , (b), (f) at 2500 iterations, (c),
(g) at 5000 iterations, and (d), (h) at 15,000 iterations. The goal regions are shown in magenta. The best paths that reach the target are highlighted with red.




© So what have we learned so far?

1. Robot planning usually involves thinking about both task and
configuration spaces

2. For many real problems, collision checking can be expensive
3. RRT: a powerful algorithm based on a very simple idea!

*  Probabilistically complete: If there’s a solution it will find it
eventually (but can still be slow for some problems)!

 BUT RRT is not optimal (cost of paths are not considered)
" Thisis an example of “feasible motion planning”
= RRT™ fixes that by incrementally rewiring the tree




© To RRT or not to RRT that is the question!

1. Why might RRTs not be the best algorithmic choice for a robot that
repeatedly does the same task?
2. How might you adapt RRT to fix this issue?
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1. RRTis a “single-query” algorithm — it starts from scratch each time
“forgetting” all of the connections it found in previous solves
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© To RRT or not to RRT that is the question!

1. Why might RRTs not be the best algorithmic choice for a robot that
repeatedly does the same task?
2. How might you adapt RRT to fix this issue?

1. RRTis a “single-query” algorithm — it starts from scratch each time
“forgetting” all of the connections it found in previous solves
2. Instead of building a tree lets build a reusable graph G

This “multi-query” approach is called Probabilistic Roadmaps (PRMs)




o Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

Step 1: Offline build a random graph G that covers the state space

orkidden space Free/feasible space




o Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

Step 1: Offline build a random graph G that covers the state space

Configurations are sampled by picking coordinates at random




o Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

Step 1: Offline build a random graph G that covers the state space

The collision-free configurations are retained as milestones




o Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

Step 1: Offline build a random graph G that covers the state space

The collision-free links are retained as local paths to form the PRM




o Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

Step 2: Online connect the start and goal nodes and run graph search

The start and goal configurations are included as milestones




o Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

Step 2: Online connect the start and goal nodes and run graph search

The PRM is searched for a path from s to g




o Collision detection for each connecting path in the
construction of the PRM can be very expensive
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[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]




o Collision detection for each connecting path in the
construction of the PRM can be very expensive

1000000

100000 3
10000 And if the obstacles
S move we have to
R recompute!
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[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]




o Collision detection for each connecting path in the
construction of the PRM can be very expensive

1000000

10000 But with custom \
hardware this can be

—+— GPU Hashsets
—&— CPU Hashsets

accelerated!
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[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]




o Custom hardware can lead to near-instantaneous collision
checking!
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Custom hardware can lead to near-instantaneous collision
checking!

DUKE ROBOTICS

Robot Motion Planning on a Chip

We'll read this paper later so I'm not

going to get into the details!
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o Custom hardware can lead to near-instantaneous collision
checking!

Realtime Robotics
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Ok so why can’t robots use these awesome kinematic
(5 ] . . . PO
planning algorithms all the time and be better at life?!:
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Ok so why can’t robots use these awesome kinematic
(5 ] . . . PSR
planning algorithms all the time and be better at life?!:

Dynamics (aka Physics)

« States:s = {9, 9} aka angle and
angular velocity

- Actions: a = T aka torque at joint

- Transitions: s" = f (s, a) aka physics




Ok so why can’t robots use these awesome kinematic
(5 ] . . . PO
planning algorithms all the time and be better at life?!:
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Ok so why can’t robots use these awesome kinematic
(5 ] . . . PO
planning algorithms all the time and be better at life?!:
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Ok so why can’t robots use these awesome kinematic
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Ok so why can’t robots use these awesome kinematic
(5 ] . . . PSR
planning algorithms all the time and be better at life?!:

Challenges for Dynamic RRTs

The “extend” operation is complex!

* We need to solve a boundary value
problem (find a path from sc to s such
that it follows the dynamics)

e Basically a “mini” planning problems




Ok so why can’t robots use these awesome kinematic
O . . . PSR
planning algorithms all the time and be better at life?!:

Challenges for Dynamic RRTs

The “extend” operation is complex!

* We need to solve a boundary value
problem (find a path from sc to s such

0 ol o . | . that it follows the dynamics)
= N : B Q: Why don’t we just try
. T a discretization of

H N AR possible actions instead
w202 e of solving a boundary

value problem?




Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

m

« States: s = {9, 9} aka angle and

angular velocity

« Actions: a = 7 aka torque at joint

- Transitions: s’ = f(s, a) aka physics

-

Task: start from the stable
downward equilibrium (0,0)
and swing up to the unstable

ijward equilibrium (m,0)

~

/




Ok so why can’t robots use these awesome kinematic
(5 ] . . . PO
planning algorithms all the time and be better at life?!:
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Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

Figure 1
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Ok so why can’t robots use these awesome kinematic
(5 ] . . . PO
planning algorithms all the time and be better at life?!:
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Ok so why can’t robots use these awesome kinematic
O . . . PSR
planning algorithms all the time and be better at life?!:

b= T00030e

So even if we ignore the
“extend” issue, “distance”

is still a problem

I o
L




Ok so why can’t robots use these awesome kinematic
(5 ] . . . PO
planning algorithms all the time and be better at life?!:
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Challenges for Dynamic RRTs

The “extend” operation is complex!

* We need to solve a boundary value
problem (find a path from sc to s such
that it follows the dynamics)

e Basically a “mini” planning problems

What is the “closest state in the tree”

 The “distance” between states of
dynamical systems is not well-defined




©® So what do we do?




©® So what dowe do?

Give up and make

the computer solve
it for us?




©® So what dowe do?

tLearning
#EfficientUseOfHumans

Give up and make

the computer solve
it for us?




© Planning in Configuration Space

Machine Learning

Random Search | Local Search




o Guest Lecture in two weeks: Can | make the computer learn
all of this for me automatically?

Humanoid:
27 DoFs, 21 Actuators.

My two cents:

Yes, And...




o Guest Lecture in two weeks: Can | make the computer learn
all of this for me automatically?
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My two cents:

Yes, And...
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o Guest Lecture in two weeks: Can | make the computer learn
all of this for me automatically?

50 B P i L e ey T I
40
30

20 My two cents:
f Yes, And...
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©® So what else can we do?

Lots of math!




© So what else can we do?

Lots of math! iR 7k
N0000000000!

imgflip.com




©® So what else can we do?

Its actually not that
bad and the math

isn’t actually that
scary | promise!




© Optimization

We can write the planning problem down as an optimization problem!
N

minimize E c(Sk, 0k) X,
50,00+, N, AN £

subject to sg11 = f(sg, ax) Xs

SN Sgoal




© Optimization

We can write the planning problem down as an optimization problem!
N

minimize E c(Sk, 0k)
50,00+, N, AN £

w0 s = o)

Minimize a cost in each state

(e.g., energy used)

SN = Sgoal Get to the goal




© Optimization

We can use Bellman updates to solve this:

* We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

N
minimize Z c(sk, ax)

$0,40,...,8SN,ON

Vn(sy) = c(sy, ay)

Vn-1(s) = ming c(Sy_1,an-1) +

subject to spy1 = f(sg, ax)
_ VN(f(SN—L aN—l))
SN — Sgoal

This leads to the classic Value Iteration algorithm




© Optimization

We can use Bellman updates to solve this:

* We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

N
minimize Zc(sk, ar)

50,20,-.., SN, ON
k=0

Vy(sy) = c(sy,ay)

subject to si11 = f(sg, ax) Vir1(s) = ming c(s, a) +

SN — Sgoal Vi (f(S, a))

This leads to the classic Value Iteration algorithm




© Optimization

We can use Bellman updates to solve this

* We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state
N

uinimize ) sk, a) Viy(sn) = csw,an)

Viet1(s) = ming c(s,a) +

Vk (f(S, a))

subject to si11 = f(sg, ax)

SN — Sgoal

Sadly again the complexity scales with d!S1=141 and those can get

HUGE fast! This is the “curse of dimensionality” again




Lets lower our expectations!

© Optimization

#localOptima #efficientUseOfComputers

We can use Bellman updates to solve this

* We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state
N

uinimize ) sk, a) Viy(sn) = csw,an)

Viet1(s) = ming c(s,a) +

Vk (f(S, a))

subject to si11 = f(sg, ax)

SN — Sgoal

Sadly again the complexity scales with d!S1=141 and those can get

HUGE fast! This is the “curse of dimensionality” again




© Planning in Configuration Space

Local Search

Random Search




© Trajectory Optimization

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

* This works well in practice (think local search)

By making slight perturbations to the current
trajectory (blue) we can get to the goal (orange)




© Trajectory Optimization

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

* This works well in practice (think local search)




© Trajectory Optimization

I’'m drawing small
quadratic bowls because
most (if not all) of the
practical algorithms make
linear and quadratic
approximations of the
nonlinear functions
allowing for efficient
gradient descent
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© Trajectory Optimization

And convex optimization tells us how to

I’'m drawing small

linear and quadratic

nonlinear functions
allowing for efficient
gradient descent

guadratic bowls because  qudsic °
most (if not all) of the
practical algorithms make

approximations of the

descend to the minima of a quadratic function

approximation ',
Al

H':}_,-"

" first-order
approximation

original
function next




© Trajectory Optimization

There are also a whole host of algorithms one can use to solve these
problems including:

 DDP, SQP, Interior-Point Methods, Trust-Region Methods, Stochastic Gradient
Descent Methods, etc.

And you can use off-the-shelf solvers to solve these problems. Popular
solvers include:

e SNOPT, IPOPT, NLOPT, fmincon (MATLAB), etc.

* Most people use off the shelf solvers!




© Trajectory Optimization

So trajectory optimization solves everything right?
e Can handle full robot dynamics
* No need for distance metrics
* (Can use off the shelf solvers reducing the coding burden
* Finds a locally optimal solution — no weird paths coming out!

= Extra motions are “optimized away”




© Trajectory Optimization

So trajectory optimization solves everything right?
e Can handle full robot dynamics
* No need for distance metrics
* (Can use off the shelf solvers reducing the coding burden
* Finds a locally optimal solution — no weird paths coming out!

= Extra motions are “optimized away”

And optimal motions often look bio-inspired as nature

generally uses optimally efficient motions!




© Atlas 1.0 Trajectory Optimization




© Trajectory Optimization

So trajectory optimization solves everything right?
e Can handle full robot dynamics
: . No free lunch strikes again!
* No need for distance metrics
* Can use off the shelf solvers reducing the coding burden

* Finds alocally optimal solution — no weird paths coming out!

* Not globally optimal (will often get stuck in local minima)

* Not even complete (problems are often non-convex so it may not even
find a feasible solution)

e Also generally slow




© Trajectory Optimization

So trajectory optimization solves everything right?
e Can handle full robot dynamics
: : No free lunch strikes again!
* No need for distance metrics
* Can use off the shelf solvers reducing the coding burden
* Finds alocally optimal solution — no weird paths coming out!
But....

* Not globally optimal (will often get stuck in local minima)

* Not even complete (problems are often non-convex so it may not even
find a feasible solution)

* | Also generally slow | Lets dive a little deeper into solvers!




© There are two popular classes of solvers

Shooting Methods Direct Methods
(e.g., DDP, iLQR) (e.g., DIRTRAN using SQP or IP)

* Easy to add constraints (e.g.,
torque limits, obstacle avoidance)

* Known fast
 Easy to leverage off the shelf

solvers (e.g., SNOPT, IPOPT)

* Hard to add constraints (e.g.,

torque limits, obstacle avoidance) _
* Considered slow

* Generally people code it
themselves




© There are two popular classes of solvers

DDP reduces to a specific factorization of the

KKT matrix solve in a direct method to exploit sparsity!

minimize  (1/2)a! Pz +qlxz +r

subject to Ax =10

P AT || z* —q
A 0 V™ b
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© There are two popular classes of solvers

ShootingM¢ = _ Direct Methods
(e.g,DDPi | I dlg a little (e.g., DIRTRAN using SQP or IP)

deeper / explaln asy to add constraints (e.g.,
thiS more in 2 brque limits, obstacle avoidance)

asy to leverage off the shelf

olvers (e.g., SNOPT, IPOPT)

* Known fast

weeks when |
present my
* Hard to add constr: researCh on

torque limits, obstz pa ra I Iel Shooting onsidered slow
* Generally people c¢
methods

themselves




© There are two popular classes of solvers

Stephen Boyd and
Lieven vandenberghe

~ convex
Optimization

Springer Series in
Operations Research

Jorge Nocedal
Stephen J. Wright

Second Edition




© Practical Challenges for Trajectory Optimization: Robustness

Manchester and Kuindersma 2017
Plancher and Kuindersma 2018

1. Solvers are (numerically) sensitive to:
* Cost function designs and dynamic range
* Regularization scheme

2. Solutions are sensitive to:
* Initial state and input trajectories

* Perturbations (solutions are often on
constraint boundaries)

Fig. 4. DIRTRAN (red), DIRTREL-1 (blue), and DIRTREL-2 (green)
quadrotor trajectories.




© Practical Challenges for Trajectory Optimization: Contact

Tedrake Underactuated

The physics equations
are fundamentally
different when an
object makes or breaks
contact

Yheel (Qj) ==}
Figure 17.1 - Modeling contact as a hybrid system.




© Practical Challenges for Trajectory Optimization: Contact

Tedrake Underactuated

For walking these
form a

cyclic graph

If we the
mode sequence and
timing we can use our
algorithms as before




© Practical Challenges for Trajectory Optimization: Contact

Manchester and Kuindersma 2017

Front Right I_l I
Front Left ' ' | | |

Back Right

Back Left
—l—l Iﬂ— But for these modes

| Y WS SN TN (NNIE S AN SN (AN (RN (7 NS (NN (RN (L SN N NALS N PO (O GO 1N RN TN (e N O
0 [ 2
Time (s)

start to become

Figure 4. Contact mode sequence for each foot from LittleDog
step-climbing example.




© Practical Challenges for Trajectory Optimization: Contact

Contact-Implicit

Trajectory

Optimization

includes the 2Hz Gaits

contact timings (real-time)
and mode

transitions as

state variables

Doshi, et. al. 2018

But these approaches
are computationally
very expensive (read

) as the number
of modes explodes
combinatorically with
the number of contact
points (Mixed-Integer
Programming)!




© Practical Challenges for Trajectory Optimization: Contact

One approach to avoid
solving these large hard

problems is to solve the
problem on
of the system




© Practical Challenges for Trajectory Optimization: Contact

Lfvy Leg State (Stance, Swing)
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Fig. 11. Overall control system diagram.




© Practical Challenges for Trajectory Optimization: Contact

And then
to these
simpler
problems

Obstacles up to 80% of Leg-Length ‘




© Key Takeaways:

1. Robot planning involves both task and configuration spaces
2. For many real problems, collision checking can be expensive

3. Sample Based Planners that leverage random search (RRT/PRM):
*  Probabilistically complete (but can still be slow sometimes)
* Single-query (RRT) vs. Multi-query (PRM)
*  Probabilistically optimal (RRT*) but generally need smoothers

4. Trajectory Optimization leverages local search to find locally
optimal (generally smooth) solutions
 Handles dynamics well but not complete or robust

 Canuse off the shelf solvers (SQP) but generally slower than a solver
that exploits sparsity in the problem (DDP/iLQR)

*  Contactis hard and we (sometimes) use simpler models for tractability




Autonomous Systems / Robotics is a BIG space

Autonomous Systems
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©® Controlis the process of executing a plan in the real world

Well the simplest thing we could try would
be to just execute the controls from our

plan directly on the real system. This is
called Open-Loop Control!




® Open Loop Control

Adapted from MATLAB Control Toolbox

Toastyness
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Adapted from MATLAB Control Toolbox

Toastyness
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® Open Loop Control

Adapted from MATLAB Control Toolbox

Toastyness

0 0.5 1 15 2
Time (minutes)




® Open Loop Control

Adapted from MATLAB Control Toolbox

Toastyness
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® Open Loop Control

Adapted from MATLAB Control Toolbox

Toastyness
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® Open Loop Control

Adapted from MATLAB Control Toolbox

Toastyness
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Time (minutes)




® Open Loop Control

Adapted from MATLAB Control Toolbox

Toastyness

Open loop controllers are
not robust to any changes
in the environment!

0 0.5 1 1.5 2
Time (minutes)




©® Feedback (Closed Loop) Control

Adapted from MATLAB Control Toolbox
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® Feedback Control

Adapted from MATLAB Control Toolbox

Toastyness
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Feedback Control can lead to amazing performance!
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©® So how do we do Feedback Control in practice?

Adapted from Wikipedia

Plant /
Process




©® So how do we do Feedback Control in practice?

Adapted from Wikipedia

> P Ke(t) I

::::::::

ssssssssssss

Plant /
Process

But you need to use trial and
error to pick the right K (and it
depends on your application)




©® So how do we do Feedback Control in practice?

Adapted from Wikipedia

> P Ke(t) I

Plant /
Process

*  What if we want the purple
response initially (go up fast) but
we don’t want to overshoot

* Oneideaisto

to avoid too much slope!




©® So how do we do Feedback Control in practice?

Adapted from Wikipedia

r(t) e(t) |

* Now we have 2 sets of gains to tune
but we can now generally get a

P Ke(t)

:

with

Plant /
Process




©® So how do we do Feedback Control in practice?

Adapted from Wikipedia

r(t) e(t) |

P Ke(t)

:

e But what if there is still an error at
convergence (aka we want the
graph to end at 1.1 exactly)




©® So how do we do Feedback Control in practice?

Adapted from Wikipedia

This is the canonical PID

» P Ke(t) I controller!

Plant /
Process

r(t) e(t)




©® So how do we do Feedback Control in practice?

Adapted from Wikipedia

Ziegler—Nichols method

From Wikipedia, the free encyclopedia
Main article: PID controller

The Ziegler-Nichols tuning method is a heuristic method of tuning a PID controller. It was developed by John G. Ziegler and Nathaniel B. Nichols. It is performed by setting the / (integral) and D (derivative)

gains to zero. The "P" (proportional) gain, K p is then increased (from zero) until it reaches the ultimate gain K,,, at which the output of the control loop has stable and consistent oscillations. K, and the
oscillation period T}, are used to set the P, |, and D gains depending on the type of controller used:

Ziegler-Nichols method!'] . . .
oot T % [ | & | & X Tuning PID gains is an art
i O5Ke -~ | = - - and there is a whole
PI 045K, | T,/12| - | 0.54K,/T. - _ !
D 08K, - | T8 | - | KT/ literature on a variety of
classic PIDIZ 06K, | T./2 | T./8 | 1.2K,/T, | 3K,T./40
Pessen Integral Rulel? | 7K, /10 | 2T, /5 | 3T, /20 1.75K, /T, 21K,T,/200 methOdS to get
some overshoot? | K,/3 | T,/2 | T,/3 0.666K,/T, K,T,/9 pa rticu |a r type S Of
no overshoot?) K./5 | Tu/2 | T./3 |(2/5)K,/T,| K,T,/15

response cu rves!




©® PID controllers work really well in practice




©® Tuning gains is hard and non-intuitive is there a better way?




©® Tuning gains is hard and non-intuitive is there a better way?

Of course there is or | wouldn’t

need the transition slide!




® The LQR Controller

What if instead of specifying
gains we can specify a cost
function we want to achieve...
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much energy to do it?




® The LQR Controller

What if instead of specifying
gains we can specify a cost
function we want to achieve...

Maybe something like track the
desired state but don’t use too
much energy to do it?

Instead of tuning
gains we can
tune cost

weights (Q,R)
which are often
more intuitive

L(x,u) = (x — xg)TQ(x —x;) + u"Ru
\ 1

Deviation of the state

Effort (torque)

from some goal state




©® The LQR Controller

It turns out if we

minimize this

quadratic cost mln E(XR — xg) Q(xk xg) + ukTRuk
over time with a k=0

linear model of s.t. Xpy1 = Axy + Buy
the dynamics

N

There is a closed

form solution to the

optimal feedback ERVPEECEE '€ vs
controller!
(Riccati Equation)




©® The LQR Controller

It turns out if we

minimize this

quadratic cost mlnz:(xk — xg) Q(xk xg) + ukTRuk
over time with a k=0

linear model of s.t. Xpy1 = Axy + Buy
the dynamics

N

This is used

widely in
practice!

There is a closed

form solution to the

optimal feedback ERVPEECEE '€ vs
controller!
(Riccati Equation)




We can also use LQR in RRT as a better metric of “distance”
and the feedback controller as the best “extend”

Finite-horizon, discrete-time LQR [edt] Bellman Updates

For a discrete-time linear system described by: [']

Zpr1 = Azy + Buy

Vy(xy) = clxy, uy)

with a performance index defined as:

N-1
I = Qe + 3, (of Qi + 1 R + 20] Nu) Vier1(x) = ming c(x,u) +
the optimal control sequence minimizing the performance index is given by: Vk ( f (x ) U))
up = —Frap
where:

Fy = (R+ B"Py1 B)  (B" P11 A+ NT) Feedback Controller for “Extend”

and P, is found iteratively backwards in time by the dynamic Riccati equation:

P.1=A"P,A— (A"P.B+ N)(R+ B"P.B) YBTPA+NT)+Q Cost-to-Go as “Distance Metric”

from terminal condition Py = (). Note that uy is not defined, since 2 is driven to its final state zx by Azy_1 + Bun_1.




0o We can also use LQR in RRT as a better metric of “distance”
and the feedback controller as the best “extend”

Tl _E Yow Jast Iooh Devcop Moo S .
NEEL| K AR0ODLL-2|0B|eD

File Edit Wew Insert Tools Desktop Window Help N

E.‘.I_DE]_[:E

NEde| A 0DEL-|

1

0.8 r

0.6

0.4 r

0.2r

ar [

02

-0.4 F

-0.6 F

[ | 0.8

: , ! -1 : : : '
2 2.5 3 3.5 4 4.5

[Perez et. al. LQR-RRT*]




o We can use LQR in RRT as a better metric of “distance” and
the feedback controller as the best “extend”

Figure 1 ® E
File Edit Wew Insert Tools Desktop Window Help N D 6 H Eé | [:E /;)% ,_)\\' {ﬂ-‘? @ Iﬁ 'ﬁ ” @ | D EI | - Q

NEZde | | RRODEL- 2| 0H| nD

Unfortunately this
still doesn’t scale
well generally as

we have to sample
in R™ which can
get huge fast

[Perez et. al. LQR-RRT*]




® So what have we learned so far?

BowonoeE

Real world autonomous systems need to use Feedback Control
PID controllers are simple and effective but require gain tuning
LOR controllers allow for cost function design instead

PID and LQR require a plan to already exist and are simply
tracking controllers
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tracking controllers

But what happens if we deviate so much from our original plan
that it is no longer valid? How do we initiate re-plans?




® So what have we learned so far?

BowonoeE

Real world autonomous systems need to use Feedback Control
PID controllers are simple and effective but require gain tuning
LOR controllers allow for cost function design instead

PID and LQR require a plan to already exist and are simply
tracking controllers

But what happens if we deviate so much from our original plan
that it is no longer valid? How do we initiate re-plans?

This is an open unsolved problem!




Model Predictive Control: re-planning fast enough that the
plan becomes the controller!

e

X @




o Model Predictive Control: re-planning fast enough that the
plan becomes the controller!

1. Plan a new trajectory




Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

2. The new plan becomes the
reference trajectory




Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

3. Execute the first step of the plan
Xs




Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

1. Re-plan based on that step




o Model Predictive Control (MPC): re-planning fast enough

2. The new plan becomes the
reference trajectory again

that the plan becomes the controller!
fxg




Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

3. Execute the first step of the new plan again

4. And repeat these steps until you reach the goal




o Recently MPC has been used in a variety of complex
autonomous systems in simulation and on physical robots

[Plancher et. al. WAFR 2018]
[Plancher et. al. ICRA 2019]

[Neunert et. al. ICRA 2016] [Neunert et. al. Humanoids 2017] [Farshidian et. al. IEEE RAL 2017]




o Recently MPC has been used in a variety of complex
autonomous systems in simulation and on physical robots

[Tassa et. al. IROS 2012]

| will go into far more detail on this when
| present my recent work during the
sample paper presentations!

[Plancher et. al. WAFR 2018]
[Plancher et. al. ICRA 2019]

[Neunert et. al. ICRA 2016] [Neunert et. al. Humanoids 2017] [Farshidian et. al. IEEE RAL 2017]




@® Practical Challenges for Control: Contact

b

x(t)

yheel(x =0
Figure 17.1 - Modeling contact as a hybrid system.




@® Practical Challenges for Control: Contact




O Key Takeaways:

1. Real world autonomous systems need to use Feedback Control

2. Tracking controllers allow for simple control design and are
quite effective in practice. Two common controllers are:

1. PID with gain tuning
2. LQR with cost function design

3. Using MIPC allows for the planner to be the controller which
enables more sophisticated control strategies

4. Contactis really hard!




Autonomous Systems / Robotics is a BIG space

Autonomous Systems

Mechanism Mapping &

: Perception o Plannin Control
Design P Localization 8
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Key Takeaways:

NoukEw  NMEe

o0

©.

NNs running on accelerator chips solve most perception problems

The Kalman/Particle Filter uses probability to solve the localization
problem but modeling and/or approximations are needed to run online
Mapping quickly becomes a memory storage problem

Stereo Depth and Visual Odometry also need acceleration to run online
Robot planning involves both task and configuration spaces

Collision checking can be expensive

Sample Based Planners (PRM, RRT, RRT*) leverage random search and
are probabilistically complete but do not scale well to high dimensions
Trajectory Optimization finds locally optimal paths but is not complete or
robust and (often) solved with (slow) off the shelf solvers

Tracking controllers (PID, LOR) work well in practice but MPC is a much
more powerful (and computationally expensive) approach

10. Contact is hard and we (sometimes) use simpler models for tractability




Key Takeaways:

1. NNsrunning on accelerator chips solve most perception problems

2. The Kalman/Particle Filter uses probability to solve the localization
problem but modeling and/or approximations are needed to run online

3. Mappingq

4. Stereo Dep to run online

FEE There is SO much room for §

6. Collision ch .

7. Sample Bas acceleration!!!! search and
are probabi dimensions

8. Trajectory (8 ot complete or

robust and (often) solved with (slow) off the shelf solvers

9. Tracking controllers (PID, LOR) work well in practice but MPC is a much
more powerful (and computationally expensive) approach

10. Contact is hard and we (sometimes) use simpler models for tractability




And that’s everything!

http://bit.ly/CS249-Feedback-L2

1:48:58 05/06/2015 UTC




CS 249r: Special Topics in Edge Computing
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The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems

3. Some of the most important (classes of) algorithms in robotics
A. The model based vs. model free tradeoff
B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a
role in improving autonomous systems




What do we mean by an Autonomous System?




The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems

3. Some of the most important (classes of) algorithms in robotics
A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a
role in improving autonomous systems
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© Key Takeaways:

1. When designing algorithms for robots you need to understand
the physical capabilities of the robot and you (potentially) need
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware




Autonomous Systems / Robotics is a BIG space

Autonomous Systems
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Computer Vision (and Perception in general) is hard

Retinal color

C(F()\» = (C.ﬁe Crm s Cf.) <

v

Perceived color
Object color

Color names

ka(A) Km(A) Ki(A)

.r'; - K\

™
f—x
: IIII

.

LMS senstivity functions

N Z4aN

et
PR

Slide Credit: Todd Zickler CS 283




CV/Perception is solved by modeling and
approximating the classification of convolution

ks(A) km(A) k()

Retinal color o= [ KON ]

elllA)) = (cusems Ci) < 1 [

i

! ! LMS senstivity functions

Perceived color
Object color
Color names

“Classification” “Convolution”
Slide Credit: Todd Zickler CS 283




We approximate convolution using linear filters

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x50=1

« B

No smoothing




Deep learning automates the design of filters, and the
selection/combination of features for classification

AlexNet: the first widely successful application of deep learning

Looks like some edges
and interest points and

Extract Features important color patterns

w/ Convolution

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design of filters, and the
selection/combination of features for classification

224

AlexNet: the first widely successful application of deep learning

n

1
Input
Imags
724

?

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design of filters, and the
selection/combination of features for classification

AlexNet: the first widely successful application of deep learning

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/




Deep learning automates the design of filters, and the
selection/combination of features for classification

But watch our for adversarial attacks on the math!

“panda” “gibbon”

57.7% confidence 909.3% confidence
“No Free Lunch!”
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@ Mapping/Localization is hard

T SATAM T00%
[* Manhattan Bridge

0.2 Manhattan Bridge Upper Roadway

8 min @ i
2.2mi - 4:59 PM x.

Three Problems

GPS is only accurate
to O(10m)

GPS relies on
already having a

perfect map of the
environment
(unrealistic often)
Other sensor data is
also quite noisy!

=¥
=

RSS (1) Position Error meters

1o Position Error

Cheap MEMS INU
—| Expensive MEMS IMU T[]

Cheap MEMS IMU

() = g T2 4512

V20

Expensive MEMS IMU
1 1

40

60 80 100 120
Time [s]




o Mapping/Localization is solved by modeling the world as an
HMM and using modeling and approximating to solve it

Track the Belief State B, of the _
state and landmarks By = p(Xt|Xo,Eq -+ E¢-1)
Hidden Markov Model (HMM)
States X update in time but we only observe the effects E

Time Update @ @ Evidence Update

P(x¢111x0, €1 - €p) = fp(xt|xo»e1 w€e) * PQxpyq|xe) P(xty1]|xg, €1 oo €p41) X jP(xt+1|xO, e1 ..€) * P(epyq|Xes1)




o Mapping/Localization is solved by modeling the world as an
HMM and using modeling and approximating to solve it

P(x¢y1lx0,€1 o) = fP(xt|x0,e1 ) * PQxegq|xe)

Time Update @ @

Evidence Update

P(x¢11]x0, €1 wonpy1) X ]P(xt+1|xo»e1 ) * P(eciq|xesr)

Particle Filter

Elapse

—l_

p

Weight <7

22 <

:

Resample

Model
With
Gaussian

Approximate
with Samples

Approximate
as Linear

Approximate
with
Samples

ATP, A

Unscented Kalman Filter - UKF

..__../ transformed
sigma poirts

.
57

UT covariance




o Mapping/Localization is solved by modeling the world as an
HMM and using modeling and approximating to solve it

Evidence Update

Time Update @ @

P(x¢111x0, €1 - €p) = fP(xt|x0,e1 @) * PQxpypq|xe) P(xtiqlx0, €1 v €p41) X fP(xt+1|xO,e1 wr) * P(ery1]|Xes1)

Extended Kalman Filter (EKF)

Approximate | Model
Elapse with Samples With £(%)
o0l Gaussian b‘
: o’ T :
: - l> ° % Approximate e\

ATP, A

“\ear

Unscented Kalman Filter - UKF

.-,../ transformed
sigma poirts

Weight <7
L]

Models / Approx mate

::;: 4 ‘3_‘ =Some Error s %‘f
“No Free Lunch!” > /

UT covariance




o Also we need to approximate the resolution of our maps and
store them intelligently to fit them in memory

“Octomap” Hornung et. al. 2012

Octomap can compresses
a5 GB mapto 230 MB

Fig. 2 Example of an octree storing free (shaded white) and occupied
(black) cells. The volumetric model is shown on the left and the corre-
sponding tree representation on the right.

Fig. 3 By limiting the depth of a query, multiple resolutions of the
same map can be obtained at any time. Occupied voxels are displayed
in resolutions 0.08 m, .64, and 1.28 m,




Autonomous Systems / Robotics is a BIG space
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© Planning (in Configuration Space) is hard

One approach is to discretize the
statespace (grid it) and use

graph search (A* = fast)

Start State

Another is to solve a global
optimization prgvblem:

minimize E c(Sk, 0r)
50,00, 8N, AN

k=0

Goal State
subject to sxy1 = f(Sk,ar)

SN = Sgoal

Complexity scales with d!!= 141 curse of Dimensionality

Configuration space




There are three main ways to approximately plan in

Configuration Space

ing

c
—
©
Q
—l

ine

Mach

Local Search

Random Search




o We can approximately plan locally optimal plans in

Configuration Space in three ways

Random Search

Online probabilistic
completeness and
optimality with
RRT*

Offline/Online for
“multi-query” with
PRM

Fig. 1. A Comparison of the RRT* and RRT algorithms on a simulation example. The tree maintained by the RRT algorithm is shown in (a)-(d) in different
stages, whereas that maintained by the RRT* algorithm is shown in (¢)-(h). The tree snapshots (a), (¢) are at 1000 iterations , (b), (f) at 2500 iterations, (c),
(g) at 5000 iterations, and (d), (h) at 15,000 iterations. The goal regions are shown in magenta. The best paths that reach the target are highlighted with red.

The PRM is searched for a path from s to g




o We can approximately plan locally optimal plans in
Configuration Space in three ways

_The PRM is searched for a path from s to g

Note: Can scale to low-dimensional

dynamical systems with LQR-RRT*

Figure 1 Figure 1

Bis EdE View l[rear) Tools [Deskon Window. Hein File Edit View Insert Tools [Desktop MWindow Help
NDSde| kA0 DEL- B0E|nD Dode kA 09EL- (08D

10
8
]
4
2
(4]
Random Search 2
-4
6
8

1o 1 0 1 2 3 4

jee maintained by the RRT algorithm is shown in (a)-(d) in different

“No Free Lunch!”
dpshots (a), (¢) are at 1000 iterations , (b), () at 2500 iterations, (c),

(g) at 5000 iterations, and (d), () at 15,000 iterations. The goal regions are shown in magenta. The best paths that reach the target are highlighted with red.




o We can approximately plan locally optimal plans in
Configuration Space in three ways

Machine Learning

ive Goals Achieved

All Randomizations

@ No Randomizations

My two cents:
Yes, and no free
lunch!

Needs to re-lean

physics and suffers
from sample
complexity

In two weeks more
on this!




o We can approximately plan locally optimal plans in
Configuration Space in three ways

Solve math
locally with
linear &
quadratic
approximations

Local Search




o Practical Challenges for Trajectory Optimization: Not
Complete, Not Robustness and Contact = No Free Lunch!

Not complete (aka no
guaranteed solution) and

often slow!
One approach to

avoid solving these
large hard problems is
to solve the problem

Solvers are numerically
sensitive

Solutions are sensitive to

initial trajectories and b
: y
perturbations

of the system

The physics equations are although this leads to
fundamentally different when behavior

an object makes or breaks
contact leading to a
combinatorial explosion




© Controlis hard (even for the experts)

1:48:58 05/06/2015 UTC




0o We use feedback tracking controllers to run our plans in the
real world (and handle the differences encountered)

Model as linear
combination of errors
and approximate

gains

This is the canonical PID controller!

r(t) :® et)

pant; | V(1) -

Process I

LQR: Quadratic Cost with

Linear Dynamics

x,u

N
min Z (x — xg)TQ(xk —x5) + uxTRuy
k=0

s.t. xgy1 = Ax, + Buy

—~———

up = —Kjxy

Solve math locally
with linear &

quadratic
approximations




0o We use feedback tracking controllers to run our plans in the
real world (and handle the differences encountered)

Model as li :
combination ¢ And if we can plan fast enough we just use constant CO,St with
Imics

and approxi replanning to control (MPC)
gains

This is the ca

We'll see this again next Wednesday!




@® Practical Challenges for Control: Contact

b

x(t)

yheel(x =0
Figure 17.1 - Modeling contact as a hybrid system.




The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system
2. Key problems and constraints for autonomous systems

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

LERIERERE This is what we will explore
C. The nofreeluncht in all of the papers! ations

4. How computer systems / architecture design has and can play a
role in improving autonomous systems




The goal for the next couple of lectures is to develop a high
level understanding of:

http://navion.mit.edu

1. What is an autonomojg

-~ Feature i

2. Key problems and cori}

3. Some of the most img

4. How computer systems / architecture design has and can play a
role in improving autonomous systems




Your homework — get on HOTCRP

He will send you a password (username is that
email address) after which | can assign you
access to review papers




