
CS249r – 2019 Nuts and Bolts

What are the prerequisites for CS 249r?

1.CS 141 and/or basic computer architecture and digital design

2.CS 61/161 and/or a basic systems programming experience

3.CS 124 and/or a basic algorithms experience

We hope to have a diverse class and assume few students will have full

exposure to the full breadth of topics we will cover. As such, we intend

to provide some background on all of the topics. That said, students may

find it helpful if they also have some background in some of the

algorithms employed in autonomous systems from classes such as CS

181/182 or AM 121. Please contact the instructor or teaching fellow if

you are interested in taking the course but are unsure about whether the

background you have is suitable.

So how is CS249r actually going to run?

So how is CS249r actually going to run?

We will provide high level background

lectures to get everyone up to speed on

the relevant topics from both

Autonomous Systems / Robotics and

Computer Systems / Architecture

So how is CS249r actually going to run?

We will provide high level background

lectures to get everyone up to speed on

the relevant topics from both

Autonomous Systems / Robotics and

Computer Systems / Architecture

Class on 9/11 will be video

taped (but not posted

anywhere) as I am doing a

Bok Center teaching review.

We will have a “no camera”

section as well.

So how is CS249r actually going to run?

We are also going to have a day of

sample presentations to provide a guide

for the types of presentations we hope

you will give on your research papers

throughout the semester and on your

final projects

So how is CS249r actually going to run?

2 students per class will present on

selected papers organized by topic

So how is CS249r actually going to run?

2 students per class will present on

selected papers organized by topic

We have posted a tentative paper list

to Canvas (along with PDFs and links)

So how is CS249r actually going to run?

So how is CS249r actually going to run?

So how is CS249r actually going to run?

So how is CS249r actually going to run?

So how is CS249r actually going to run?

So how is CS249r actually going to run?

So how is CS249r actually going to run?

So how is CS249r actually going to run?

2 students per class will present on

selected papers organized by topic

We have posted a tentative paper list

to Canvas (along with PDFs and links)

Start to think about which papers you

want as we will be allocating them in

a week or two!

So how is CS249r actually going to run?

2 students per class will presentations

on selected papers organized by topic

We have posted a tentative paper list

to Canvas (along with PDFs and links)

Start to think about which papers you

want as we will be allocating them in

a week or two!

If you have an idea for a paper not on

the list please run it by us and we

may be willing to swap it in!

So how is CS249r actually going to run?

We will simulate the conference review

process in the middle of the term to give

students insight into how papers are

judged and thus accepted or rejected

We will discuss the reviews of an

accepted paper during the example

paper presentations

So how is CS249r actually going to run?

We will simulate the conference review

process in the middle of the term to give

students insight into how papers are

judged and thus accepted or rejected

We will discuss the reviews of an

accepted paper during the example

paper presentations

You’ll actually get to see the

submitted version and final

version of one of my papers

with the actual reviews

So how is CS249r actually going to run?

Finally we wrap up the semester with a

lot of time to work on and then present

final projects.

Note the mid semester project proposal

due date!

How do you get an A in CS 249r?

1. Paper Reviews – 20%

2. Paper Presentation – 20%

3. Class Participation – 10%

4. Final Project – 50%

Paper Reviews – 20%

Goals:

1. To develop the skill of reading papers and quickly

taking away the big picture ideas.

Assignments:

1. Submit a short “review” on each research paper read

during the course (and submit the review 36 hours BEFORE

the class in which it is presented)

Paper Reviews – 20%

Goals:

1. To develop the skill of reading papers and quickly

taking away the big picture ideas.

Assignments:

1. Submit a short “review” on each research paper read

during the course (and submit the review 36 hours BEFORE

the class in which it is presented)

We will use HOTCRP (the standard submission

system from Computer Architecture Conferences)

Paper Reviews – 20%

Goals:

1. To develop the skill of reading papers and quickly

taking away the big picture ideas.

2. Crowdsource a best practice guide on writing papers

Assignments:

1. Submit a short “review” on each research paper read

during the course (and submit the review 36 hours BEFORE

the class in which it is presented)

Paper Presentation(s) – 20%

Goals:

1. To develop the skill of understanding a paper in detail

2. Practice presenting a (conference) paper to audience

and teaching a concept to a class

Assignments:

1. Give at least one 18 minute presentation on a

research paper followed by 10 minutes of Q&A (and

meet with the course staff a week prior to your presentation)

Paper Presentation(s) – 20%

Goals:

1. To develop the skill of understanding a paper in detail

2. Practice presenting a (conference) paper to audience and

teaching a concept to a class

Assignments:

1. Give at least one 18 minute presentation on a research paper

followed by 10 minutes of Q&A (and meet with the course staff a

week prior to your presentation)

• ~5 minutes of setup (What is the problem? Why is it important? What are the key challenges?)

• ~5 minutes of contribution (What did the author(s) do? Why was it novel?)

• ~8 minutes of context (What work did it build on /how does it compare?)

Class Participation – 10%

Goals:

1. Practice absorbing a (conference) paper presentation

2. To give feedback to presenters

Assignments:

1. Be an active participant in class

2. Submit anonymous feedback on each presentation

Final Project – 50%

Goals:

1. Practice being a graduate student:

a) Coming up with a research idea

b) Workshopping the idea with others / advisors

c) Collaboratively conducting the research

d) Writing up a (conference) paper in Latex

e) Giving a presentation on the paper

Assignments:

1. Work in teams of 2-3 students to submit a project proposal

midway through the semester and a final project report at the end

of the semester as well as presenting that research to the class

Final Project – 50%

Goals:

1. Practice being a graduate student:

a) Coming up with a research idea

b) Workshopping the idea with others / advisors

c) Collaboratively conducting the research

d) Writing up a (conference) paper in Latex

e) Giving a presentation on the paper

Assignments:

1. Work in teams of 2-3 students to submit a project proposal

midway through the semester and a final project report at the end

of the semester as well as presenting that research to the class

We would love to find a way to incorporate

your research into your final project

Any questions?

Quick survey of all of you

Undergrads vs Grads

Definitely vs Maybe Enrolling

Architecture vs. Robotics / Autonomous Systems vs. Neither

Ok so lets dive into a little material for next week!

What do we mean by an Autonomous System?

Real World

ActuatorsSensors Compute

Autonomous System

What do we mean by an Autonomous System?

Real World

ActuatorsSensors Compute

Autonomous System

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Mechanism designers create new robots and actuators1

Katz, Di Carlo and Kim ICRA 2019

Mechanism designers create new robots and actuators1

MIT 2.74

Mechanism designers create new robots and actuators1

Mechanism designers create new robots and actuators1

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Sensor designers try to find new ways to collect data
about the world around the autonomous system

2

MEMs IMUs / Gyroscopes Motor Encoders

Sensor designers try to find new ways to collect data
about the world around the autonomous system

2

Structured Light (e.g., LIDAR)

(and other Structured Waves e.g., Sonar,

RADAR, etc.)

Sensor designers try to find new ways to collect data
about the world around the autonomous system

2

Unstructured Light (aka Cameras)

Sensor designers try to find new ways to collect data
about the world around the autonomous system

2

Unstructured Light (aka Cameras)

Computer

Vision

(we’ll talk

about this

later)

Usable

Data

Sensor designers try to find new ways to collect data
about the world around the autonomous system

2

http://www.gelsight.com/

Key Takeaways:

1. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware and
requirements for control algorithms

2. Understanding the sensors on your system will help you
understand at what rate you can get information and the
bandwidth of the information you will need to process

3. Different kinds of sensors will require different amounts of
onboard compute to process the information

1 2

Our topic for next week – Compute!
Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer Hardware

Your homework for next week 1/2

Robotics

Your homework for next week 2/2

Robotics

And finally some fun robot videos

CS 249r: Special Topics in Edge Computing
Intro to Autonomous Systems / Robotics Part 1

Brian Plancher

Fall 2019

What do we mean by an Autonomous System?

Real World

ActuatorsSensors Compute

Autonomous System

So how is CS249r actually going to run?

Reading / Presenting Papers

Background Lectures

Final Project

So how is CS249r actually going to run?

Reading / Presenting Papers

Background Lectures

Final Project

FYI the exact dates of

the first couple

weeks are moving

around a little bit

How do you get an A in CS 249r?

1. Paper Reviews – 20%

2. Paper Presentation – 20%

3. Class Participation – 10%

4. Final Project – 50%

What are the prerequisites for CS 249r?

1.CS 141 and/or basic computer architecture and digital design

2.CS 61/161 and/or a basic systems programming experience

3.CS 124 and/or a basic algorithms experience

We hope to have a diverse class and assume few students will have full

exposure to the full breadth of topics we will cover. As such, we intend

to provide some background on all of the topics. That said, students may

find it helpful if they also have some background in some of the

algorithms employed in autonomous systems from classes such as CS

181/182 or AM 121. Please contact the instructor or teaching fellow if

you are interested in taking the course but are unsure about whether the

background you have is suitable.

Any quick nuts and bolts questions?

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems for autonomous systems

3. Some of the most important (classes of) algorithms in robotics

4. The model based vs. model free tradeoff

5. The online vs offline tradeoff

6. The no free lunch theorem and the need for approximations

7. How computer systems / architecture design has and can play a
role in improving autonomous systems

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Key Takeaways:

1. When designing algorithms for robots you need to understand
the physical capabilities of the robot and you (potentially) need
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware

1 2

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Perception is the processing of sensor data to
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

Sensor Data

Perception

Perception is the processing of sensor data to
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

Sensor Data

Perception

We can compute the depth to objects by using
geometry and physics

3

Unstructured Light (aka Cameras)

Computer

Vision
Usable

Data

Structured Light (e.g., LIDAR)

(and other Structured Waves e.g.,

Sonar, RADAR, etc.)

We can compute the depth to objects by using
geometry and physics

3

Stereo depth is such an important problem that Intel
has designed a custom chip!

3

Perception is the processing of sensor data to
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

Sensor Data

Perception

Perception is the processing of sensor data to
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

Perception is the processing of sensor data to
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

Perception is the processing of sensor data to
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

3 Computer Vision is a hard problem

Slide Credit: Hamilton Chong

What color(s) are this shirt and these pants?

3 Computer Vision is a hard problem

Slide Credit: Hamilton Chong

3 Computer Vision is a hard problem

Adelson 1995

3 Computer Vision is a hard problem

Adelson 1995

3 Computer Vision is a hard problem

3 Computer Vision is a hard problem

Slide Credit: Todd Zickler CS 283

3 Computer Vision is a hard problem

Slide Credit: Todd Zickler CS 283

So how can we

represent this

with an

algorithm?

3 Computer Vision is a hard problem

Slide Credit: Todd Zickler CS 283

So how can we

represent this

with an

algorithm?

3 Computer Vision is a hard problem

Well lets start by

building up some

intuition for how

to find an edge!

3 Edges are where discontinuities occur in images

3 Edges are where discontinuities occur in images

Key insight: discontinuities are

where the derivative is high!

3 Noise will corrupt our derivative computation

3 “Spatially local averaging” reduces noise

So what is a convolution of a linear filter?

3
The traditional Computer Vision approach is through
convolution of linear filters

3 “Spatially local averaging” reduces noise

3 “Spatially local averaging” reduces noise

Ok so lets smooth and then

take a derivative!

3 “Spatially local averaging” reduces noise

Ok so lets smooth and then

take a derivative!

It turns out through math that

two convolutions is the same

as the convolution of the

product of the filters – so lets

just apply the derivative of a

Gaussian filter!

�
��

�
��

3
Derivatives increase noise so we can find edges using a
derivative of Gaussian Filter

�
��

�
��

3
Derivatives increase noise so we can find edges using a
derivative of Gaussian Filter

But not all edges are

vertical or horizontal

what can we do?

�
��

�
��

3
Derivatives increase noise so we can find edges using a
derivative of Gaussian Filter

3
Various filters can be used to extract features to e.g.,
stich panoramas

3
Various filters can be used to extract features to e.g.,
stich panoramas

3
But what features should we use for object
recognition?

The ImageNet Challenge

provided 1.2 million

examples of 1,000

labeled items and

challenged algorithms to

learn from the data and

then was tested on

another 100,000 images

3 The ImageNet Challenge

In 2010 teams had

75-50% error

In 2011 teams had

75-25% error

3 The ImageNet Challenge

In 2012 still no team

had less than 25%

error barrier except

AlexNet at 15%

3 The ImageNet Challenge

AlexNet: the first widely successful application of deep learning

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

3
Deep learning automates the design, selection and
extraction of features, with amazing results

3
Deep learning automates the design, selection and
extraction of features, with amazing results

AlexNet

Traditional Computer Vision Flow

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and
extraction of features, with amazing results

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Features

w/ Convolution

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Features

w/ Convolution

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and
extraction of features , with amazing results

Looks like some edges

and interest points and

important color patterns

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and
extraction of features, with amazing results

Summarize the

features to get

higher level

features

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and
extraction of features, with amazing results

And repeat until you have super high level features for classification

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and
extraction of features, with amazing results

Classify

3

https://www.researchgate.net/figure/Historical-top5-error-rate-of-the-annual-

winner-of-the-ImageNet-image-classification_fig7_303992986

Deep learning automates the design, selection and
extraction of features, with amazing results

Key Takeaway: the computer is better than

us at determining what features are

salient and weighting them appropriately!

Google can now even automatically caption images!3

The latest and greatest detectors can now find
thousands of images in real-time

3

And can be used to track objects in real time3

What might be the downside to using NNs?3

3 For one, NNs can be tricked by adversarial markings

3 For one, NNs can be tricked by adversarial markings

Ackerman “Hacking the Brain With Adversarial Images”

3 For one, NNs can be tricked by adversarial markings

Ackerman “Hacking the Brain With Adversarial Images”

There is no model of

the world semantically

just mathematically

3
Second, (good) NN models are (often) large and
expensive to train and compute

[Bianco et. al. Benchmark Analysis of Representative Deep Neural Network Architectures]

3
For this reason NNs (often) need accelerators to run
online (and this is a very active area of research)

Can run in real time (35fps) at a 10X energy

reduction over a mobile GPU (TX2?)!

Key Takeaways:3

1. As of today it seems like CNNs that automate the design and
summary of salient features via convolution are the way to go

• But/and will need specialized NN running on specialized accelerator
chips to get them small enough to fit on small power constrained
autonomous systems (e.g., small drones)

• And we will need to find ways to secure them against attacks!

2. Also, other more targeted problems such as Stereo Depth
seem to need accelerators!

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Mapping & Localization is the process of using perception
information to understand where a robot is in the world

4

GPS provides a good idea of where a robot is globally…4

GPS

Module

… but isn’t very accurate locally and requires a map4

GPS

Module Two Problems

1. GPS is only accurate to

O(10m)

2. GPS relies on already

having a perfect map of

the environment

(unrealistic often)

… but isn’t very accurate locally and requires a map4

Two Problems

1. GPS is only accurate to

O(10m)

2. GPS relies on already

having a perfect map of

the environment

(unrealistic often)

Localization Problem

Mapping Problem

… but isn’t very accurate locally and requires a map4

Two Problems

1. GPS is only accurate to

O(10m)

2. GPS relies on already

having a perfect map of

the environment

(unrealistic often)

Localization

Problem

Mapping Problem

We can use cameras and other sensors to measure the local
environment but these sensors are also noisy

4

So what can we do?4

Track the Belief State �� �� = � �� = 	|Past States and Sensor Info

Let’s look at a concrete example of this in action4

10
Probabilities

t=0

Example from Michael Pfeiffer

Initialize with uniform probabilities everywhere

Let’s look at a concrete example of this in action4

10
Probabilities

t=1

Example from Michael Pfeiffer

Take initial measurement and update

Lighter grey = less likely erroneous readings

Let’s look at a concrete example of this in action4

10
Probabilities

t=2

Example from Michael Pfeiffer

Update for motion and next sensor reading

Let’s look at a concrete example of this in action4

10
Probabilities

t=3

Example from Michael Pfeiffer

Update for motion and next sensor reading

Let’s look at a concrete example of this in action4

10
Probabilities

t=4

Example from Michael Pfeiffer

Update for motion and next sensor reading

Let’s look at a concrete example of this in action4

10
Probabilities

t=5

Example from Michael Pfeiffer

Converge after motion and next sensor reading

One approach is to model the probability of being in a given
state with a Hidden Markov Model

4

Hidden Markov Model (HMM)

States X update in time but we only observe the effects E

Track the Belief State �� �� = � 	�|	�, �� ⋯ ����

Report the mean of

the Belief State

(which is a probability

distribution) as our

current best estimate

of the state

The Kalman Filter updates the belief state (a probability
distribution) for the passage of time and for evidence

4

Time Update X2X1

Evidence Update
X2

E2

Based on a model of

physics usually

Based on a model of

the sensor data

usually

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|��

� �� !|�", #! … #� ! ∝ % � �� !|�", #! … #� ∗ � #� !|�� !

The Kalman Filter updates the belief state (a probability
distribution) for the passage of time and for evidence

4

Time Update X2X1

Evidence Update
X2

E2

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|��

� �� !|�", #! … #� ! ∝ % � �� !|�", #! … #� ∗ � #� !|�� !

Based on a model of

physics usually

Based on a model of

the sensor data

usually

There are a variety of

ways to compute this

(and we’ll highlight 4)

There are four popular ways to compute this in practice4

1. Pass the full belief

PDF through

nonlinear
equations for the

motion update

(physics) and the

sensor update

Actual (sampling for clarity)

Actual (sampling)

van der Merwe and Wan (2001)

Most accurate but

computationally very

expensive (often

intractable)

There are four popular ways to compute this in practice4

Berkely AI Material and Scott Kuindersma

Particle Filter

Elapse

Weight

Resample

Can be very accurate

but also computation-

ally expensive (lots of

particles)

2. Pass many

samples through the

nonlinear equations

for the motion update

(physics) and the

sensor update and

use the samples as a

discrete

approximation of the

probability

distribution

There are four popular ways to compute this in practice4

Dieter Fox

There are four popular ways to compute this in practice4

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|�� What if we

don’t want to

sample?

X2X1

There are four popular ways to compute this in practice4

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|�� Lets do some

math for a

minute

X2X1

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|�� Lets do some

math for a

minute

X2X1

There are four popular ways to compute this in practice4

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|�� Lets do some

math for a

minute

X2X1

There are four popular ways to compute this in practice4

I promise its

not that bad!

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|�� Lets do some

math for a

minute

X2X1

There are four popular ways to compute this in practice4

I promise its

not that bad!

There are four popular ways to compute this in practice4

http://www.cs.columbia.edu/~liulp/pdf/linear_normal_dist.pdf

Well if we represent the transition from one state to the next by a linear equation

(just linearize physics) and represent P(x) as Gaussian then we can just use this simple

linear transformation to do all of the math super fast!

� �� !|�", #! … #� = % � ��|�", #! … #� ∗ � �� !|�� Lets do some

math for a

minute

X2X1

There are four popular ways to compute this in practice4

van der Merwe and Wan (2001)

Extended Kalman Filter - EKF

Simplest and least

accurate as assumes

Gaussian + linear

3. Assume the belief

PDF is Gaussian
and pass it through

linearized
equations for the

motion update

(physics) and the

sensor update

There are four popular ways to compute this in practice4

van der Merwe and Wan (2001)

Unscented Kalman Filter - UKF

Moderately accurate

but assumes Gaussian

4. Assume the belief PDF

is Gaussian and

pass limited

samples through the

nonlinear equations

for the motion update

(physics) and the

sensor update and

reconstruct the

Gaussian on the other

side

There are four popular ways to compute this in practice4

Hassanzadeh and Fallah 2008

There are four popular ways to compute this in practice4

Hassanzadeh and Fallah 2008 Varin and Kuindersma 2018

There are four popular ways to compute this in practice4

Hassanzadeh and Fallah 2008 Varin and Kuindersma 2018

Modeling is helpful to reduce computation but No Free Lunch!

There are four popular ways to compute this in practice4

1. Pass the full belief PDF through nonlinear equations for the motion

update (physics) and the sensor update

Most accurate but

computationally very

expensive (often intractable)

2. Pass many samples through the nonlinear equations for the

motion update (physics) and the sensor update and use the samples as

a discrete approximation of the probability distribution

Can be very accurate but can

also be computationally

expensive (Particle Filter)

There are four popular ways to compute this in practice4

1. Pass the full belief PDF through nonlinear equations for the motion

update (physics) and the sensor update

Most accurate but

computationally very

expensive (often intractable)

3. Assume the belief PDF is Gaussian and pass it through linearized
equations for the motion update (physics) and the sensor update

Simplest and least accurate as

assumes linear (Extended

Kalman Filter - EKF)

4. Assume the belief PDF is Gaussian and pass limited samples

through the nonlinear equations for the motion update (physics) and

the sensor update and reconstruct the Gaussian on the other side

Moderately accurate but

assumes Gaussian (Unscented

Kalman Filter - UKF)

2. Pass many samples through the nonlinear equations for the

motion update (physics) and the sensor update and use the samples as

a discrete approximation of the probability distribution

Can be very accurate but can

also be computationally

expensive (Particle Filter)

But what if we don’t have a map of the environment?4

Two Problems

1. GPS is only accurate to

O(10m)

2. GPS relies on already

having a perfect map of

the environment

(unrealistic often)

Localization Problem

Mapping

Problem

But what if we don’t have a map of the environment? Enter
Simultaneous Localization and Mapping (SLAM)

4

Essentially just additionally tracking the

belief of landmarks in the environment

(walls, buildings, trees, etc.)

Ho and Newman 2006

But what if we don’t have a map of the environment? Enter
Simultaneous Localization and Mapping (SLAM)

4

Essentially just additionally tracking the

belief of landmarks in the environment

(walls, buildings, trees, etc.)

The real hard part is figuring out when you have

been somewhere before as measurements drift

(the loop closure problem)

Ho and Newman 2006

SLAM with Loop Closure4

Mapping can even be done in 3D!4

However building (and even storing) maps leads to a huge
memory problem especially on small mobile systems

4

3D grid at 10cm resolution was

5058.76 MB (over 5 GB)

“Octomap” Hornung et. al. 2012

However building (and even storing) maps leads to a huge
memory problem especially on small mobile systems

4

3D grid at 10cm resolution was

5058.76 MB (over 5 GB)

Oct-tree w/ Maximum

Likelihood metric was able to

compress that to 230.33 MB

“Octomap” Hornung et. al. 2012

However building (and even storing) maps leads to a huge
memory problem especially on small mobile systems

4

“Octomap” Hornung et. al. 2012

But how would we run localization online in a drone
that is too small to carry fancy sensors?

4

Any ideas?

You can estimate the velocity of an object through
matching interest points (Visual Odometry)…

MIT has even produced

a chip called NAVION to

compute this

4

…and then build a custom chip to fit it onboard!4

Key Takeaways:

1. The Kalman/Particle Filter uses probability to solve the
localization problem but modeling and/or approximations
are needed for it to run efficiently online

2. Mapping quickly becomes a memory storage problem

3. Constrained form factors (aka tiny drones) will need novel
accelerators to allow for autonomy

4

Your homework for next class

Your homework for next class

Robotics

We have posted a tentative paper list

to Canvas (along with PDFs and links)

Start to think about which papers you

want as we will be allocating them in

a week or two!

If you have an idea for a paper not on

the list please run it by us and we

may be willing to swap it in!

I’d love any Feedback!

Robotics
http://bit.ly/CS249-Feedback-L1

CS 249r: Special Topics in Edge Computing
Intro to Autonomous Systems / Robotics Part 2

Brian Plancher

Fall 2019

Feedback from last class

1. Pace is a tad fast

2. Get more technical/depth

Feedback from last class
Also thanks for the open

ended feedback!

1. Pace is a tad fast

2. Get more technical/depth

Your homework for next class

Robotics

We have posted a tentative paper list

to Canvas (along with PDFs and links)

Start to think about which papers you

want – I will send a link to vote for

preferences in a week or so!

If you have an idea for a paper not on

the list please run it by us and we

may be willing to swap it in!

Your homework for next class

Robotics

We have posted a tentative paper list

to Canvas (along with PDFs and links)

Start to think about which papers you

want – I will send a link to vote for

preferences in a week or so!

If you have an idea for a paper not on

the list please run it by us and we

may be willing to swap it in!

Were going to use HOTCRP (linked on Canvas and

https://www.eecs.harvard.edu/cs249r/) for these

for Monday – you will get an email from Glenn

Holloway with a Password to access the site. (I am

giving him the full roster as of today)

Your homework for next class

Robotics

Click on a paper to access that paper’s page

Your homework for next class

Robotics

Then click “Write

review” to open

up the form to

submit a “review”

Your homework for next class

Robotics

Then just fill it

out and submit

and you’ll be

good to go!

The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems for autonomous systems

3. Some of the most important (classes of) algorithms in robotics

4. The model based vs. model free tradeoff

5. The online vs offline tradeoff

6. The no free lunch theorem and the need for approximations

7. How computer systems / architecture design has and can play a
role in improving autonomous systems

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Key Takeaways:

1. When designing algorithms for robots you need to understand
the physical capabilities of the robot and you (potentially) need
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware

1 2

Key Takeaways:3

1. As of today it seems like CNNs that automate the design and summary
of salient features via convolution are the way to go

• But/and will need specialized NN running on specialized accelerator chips to get them small enough
to fit on small power constrained autonomous systems (e.g., small drones)

• And we will need to find ways to secure them against attacks!

2. Also, other more targeted problems such as Stereo Depth seem to need
accelerators!

Key Takeaways:

1. The Kalman/Particle Filter uses probability to solve the localization
problem but modeling and/or approximations are needed for it to
run efficiently online

2. Mapping quickly becomes a memory storage problem

3. Constrained form factors (aka tiny drones) will need novel
accelerators to allow for autonomy

4

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Planning is the process of computing an action plan for a
robot based on the previously computed map

5

Planning is the process of computing an action plan for a
robot based on the previously computed map

5

Start State

Goal State

Planning is the process of computing an action plan for a
robot based on the previously computed map

5

Start State

Goal State

Planning is the process of computing an action plan for a
robot based on the previously computed map

5

Start State

Goal State

Before we can

think about how to

compute this we

need to figure out

in what state space

are we planning?

• Task space: the 6D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

5 Spaces and Transformations (aka where are we planning?)

• Task space: the 6D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

5 Spaces and Transformations (aka where are we planning?)

• Task space: the 6D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

• Forward kinematics: maps q to outputs in
task space (e.g. hand position)

• Inverse kinematics: maps task space poses
to configuration space

5 Spaces and Transformations (aka where are we planning?)

• Task space: the 6D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the
robot’s hand or an object

• Configuration space: the n-dimensional
space of joint angles + robot world position

• Vector

• Forward kinematics: maps q to outputs in
task space (e.g. hand position)

• Inverse kinematics: maps task space poses
to configuration space

Q: Are forward and

inverse kinematics 1

to 1 operations?

5 Spaces and Transformations (aka where are we planning?)

Q1: What is the configuration

space state for this

omnidirectional robot?

5 Configuration Space

Q1: What is the configuration

space state for this

omnidirectional robot?

A1: (x,y) position of the

center of the robot

5 Configuration Space

Q2: How can we map this

robot’s world into

configuration space?

5 Configuration Space

Well we want the robot to

become a single (x,y) point

5 Configuration Space

5 Configuration Space So we need to inflate the

obstacles accordinly

5 Configuration Space

• Insight: mapping task space

obstacles and goals into

configuration space allows us

to plan a path for a single

point instead of worrying

about a full robot

5 Configuration Space

How can we map this robot

and its world into

configuration space?

5 Configuration Space

5 How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, q, is in an

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration

space is hard

5 How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, q, is in an

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration

space is hard

Better approach: use forward kinematics to check

task space obstacle collisions!

Treat the collision checker as a

black box function evaluator!

5 How to use configuration space in practice

If we map the obstacles into configuration space we

can check whether the configuration point, q, is in an

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration

space is hard

Better approach: use forward kinematics to check

task space obstacle collisions!

• No free lunch – Now each collision check

requires full kinematics and not a simple lookup

Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

� ∈ ��: (x,y,z,θ,φ,ϕ)

Planning in Configuration Space5

Start State

Goal State

One approach is to discretize the statespace (grid it)

and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

Planning in Configuration Space5

Start State

Goal State

One approach is to discretize the statespace (grid it)

and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

Unfortunately if we use say 100 discrete steps in

each direction we get:

	 = ����

Planning in Configuration Space5

One approach is to discretize the statespace (grid it)

and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

Unfortunately if we use say 100 discrete steps in

each direction we get:

	 = ����A
B

(2 ankles + 2 knees + 2

hips + 2 shoulders + 2

elbows + 4 fingers + pose

of com) = ~�� variables

Unfortunately if we use say 100 discrete steps in

each direction we get:

	 = �����

Planning in Configuration Space5

One approach is to discretize the statespace (grid it)

and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

Curse of Dimensionality!

A
B

Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

So if we can’t explicitly

form the graph and

search the configuration

space what can we do?

Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ� Actions: Δq Transition:

What if we incrementally

build up a path toward the

goal?

Planning in Configuration Space5

Random Search

Machine Learning

Local Search

The main idea is to use randomness to

rapidly explore an entire state space to find a

path from a given start location to the goal.

One of the most famous robot motion planning

algorithms is Rapidly Exploring Random

Trees (RRTs) [Lavalle & Kuffner]

Rapidly Exploring Random Trees (RRTs)5

Key idea: uniform random sampling in configuration space is

actually a heuristic that encourages exploration!

To see this we use Voronoi regions
Def: Voronoi region is the set of points in space that are closest to a

particular node in the tree:

5 Randomness encourages exploration

5 Randomness encourages exploration

5 Randomness encourages exploration

5 Randomness encourages exploration

5 Randomness encourages exploration

5 Randomness encourages exploration

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

Rapidly Exploring Random Trees (RRTs)5

s0

s

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

Rapidly Exploring Random Trees (RRTs)5

s0

s

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal
s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal
s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

Rapidly Exploring Random Trees (RRTs)5 Extend distance trades

off sample vs.

computational efficiency

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

Rapidly Exploring Random Trees (RRTs)5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

Rapidly Exploring Random Trees (RRTs)5

It will always find a solution because

it is probabilistically complete

Rapidly Exploring Random Trees (RRTs)5

Rapidly Exploring Random Trees (RRTs)5

Biased

sampling

can help!

RRTs often works really well in practice5

RRTs often works really well in practice5

Questions about the RRT algorithm?5

s0

sgoal

Algorithm (input: s0, sgoal, initial

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a

path from s0 to sgoal

s

But we can get some WEIRD outputs…5

But we can get some WEIRD outputs…5

But we can get some WEIRD outputs…5

RRT is not optimal (cost of paths are not considered)

 This is an example of “feasible motion planning”

We solve this problem with RRT*5

The big trick:

• incrementally “re-wiring” the tree to

keep locally optimal paths

We solve this problem with RRT*5

RRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

sgoal

s0

s’
sc

2

3

3

2

1

s

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3

3

2

1
“nearest” states

2
22

We solve this problem with RRT*5

sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3
2

1
“nearest” states

2

smin

We solve this problem with RRT*5

sgoal

s0

2

3
2

1

2

sgoal

s0

s’
sc

2

3

3

2

1

We solve this problem with RRT*5

RRT RRT*

sgoal

s0

2

3
2

1

2

sgoal

s0

s’
sc

2

3

3

2

1

We solve this problem with RRT*5 Nearest radius size is

another sample vs.

computational

efficiency decision!

[Karaman & Fazzoli Sampling-based Algorithms for Optimal Motion Planning]

RRT*

RRT

RRT*5

1. Robot planning usually involves thinking about both task and

configuration spaces

2. For many real problems, collision checking can be expensive

3. RRT: a powerful algorithm based on a very simple idea!

• Probabilistically complete: If there’s a solution it will find it

eventually (but can still be slow for some problems)!

• BUT RRT is not optimal (cost of paths are not considered)

 This is an example of “feasible motion planning”

 RRT* fixes that by incrementally rewiring the tree

So what have we learned so far?5

1. Why might RRTs not be the best algorithmic choice for a robot that

repeatedly does the same task?

2. How might you adapt RRT to fix this issue?

To RRT or not to RRT that is the question!5

1. Why might RRTs not be the best algorithmic choice for a robot that

repeatedly does the same task?

2. How might you adapt RRT to fix this issue?

1. RRT is a “single-query” algorithm – it starts from scratch each time

“forgetting” all of the connections it found in previous solves

To RRT or not to RRT that is the question!5

1. Why might RRTs not be the best algorithmic choice for a robot that

repeatedly does the same task?

2. How might you adapt RRT to fix this issue?

1. RRT is a “single-query” algorithm – it starts from scratch each time

“forgetting” all of the connections it found in previous solves

2. Instead of building a tree lets build a reusable graph G

To RRT or not to RRT that is the question!5

1. Why might RRTs not be the best algorithmic choice for a robot that

repeatedly does the same task?

2. How might you adapt RRT to fix this issue?

This “multi-query” approach is called Probabilistic Roadmaps (PRMs)

1. RRT is a “single-query” algorithm – it starts from scratch each time

“forgetting” all of the connections it found in previous solves

2. Instead of building a tree lets build a reusable graph G

To RRT or not to RRT that is the question!5

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

5

Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

5

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

5

Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

5

Step 1: Offline build a random graph G that covers the state space

Step 2: Online connect the start and goal nodes and run graph search

Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

5

Probabilistic Roadmaps (PRMs) leverage an offline and an
online computation phase

5

Step 2: Online connect the start and goal nodes and run graph search

[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]

Collision detection for each connecting path in the
construction of the PRM can be very expensive

5

[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]

Collision detection for each connecting path in the
construction of the PRM can be very expensive

5

And if the obstacles

move we have to

recompute!

[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]

But with custom

hardware this can be

accelerated!

Collision detection for each connecting path in the
construction of the PRM can be very expensive

5

Custom hardware can lead to near-instantaneous collision
checking!

5

Custom hardware can lead to near-instantaneous collision
checking!

5

We’ll read this paper later so I’m not

going to get into the details!

Custom hardware can lead to near-instantaneous collision
checking!

5

Realtime Robotics

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Dynamics (aka Physics)

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

The Simplest “Robot”

• States: � = �, �� aka angle and

angular velocity

• Actions: � = � aka torque at joint

• Transitions: �’ = �(�, �) aka physics

Dynamics (aka Physics)

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

S

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

S

	�

Challenges for Dynamic RRTs

The “extend” operation is complex!

• We need to solve a boundary value

problem (find a path from sc to s such

that it follows the dynamics)

• Basically a “mini” planning problems

S

	�

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Challenges for Dynamic RRTs

The “extend” operation is complex!

• We need to solve a boundary value

problem (find a path from sc to s such

that it follows the dynamics)

• Basically a “mini” planning problemsQ: Why don’t we just try

a discretization of

possible actions instead

of solving a boundary

value problem?

S

	�

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Task: start from the stable

downward equilibrium (0,0)

and swing up to the unstable

upward equilibrium (�,0)
• States: � = �, �� aka angle and

angular velocity

• Actions: � = � aka torque at joint

• Transitions: �’ = �(�, �) aka physics

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

S

	�

	�

So even if we ignore the

“extend” issue, “distance”

is still a problem

Challenges for Dynamic RRTs

The “extend” operation is complex!

• We need to solve a boundary value

problem (find a path from sc to s such

that it follows the dynamics)

• Basically a “mini” planning problems

What is the “closest state in the tree”

• The “distance” between states of

dynamical systems is not well-defined

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5

So what do we do?5

So what do we do?5

Give up and make

the computer solve

it for us?

So what do we do?5

Give up and make

the computer solve

it for us?

#Learning

#EfficientUseOfHumans

Planning in Configuration Space5

Random Search

Machine Learning

Local Search

My two cents:

Yes, And…

Guest Lecture in two weeks: Can I make the computer learn
all of this for me automatically?

5

Guest Lecture in two weeks: Can I make the computer learn
all of this for me automatically?

5

My two cents:

Yes, And…

Guest Lecture in two weeks: Can I make the computer learn
all of this for me automatically?

5

My two cents:

Yes, And…

So what else can we do?5

So what else can we do?5

Lots of math!

So what else can we do?5

Lots of math!

So what else can we do?5

Its actually not that

bad and the math

isn’t actually that

scary I promise!

We can write the planning problem down as an optimization problem!

Optimization5

�

�!

We can write the planning problem down as an optimization problem!

Minimize a cost in each state

(e.g., energy used)

Obey physics

Get to the goal

Optimization5

We can use Bellman updates to solve this:

• We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

"#$% � = min) * �#$%, �#$% +
"# �# = * �#, �#

"# � �#$%, �#$%

This leads to the classic Value Iteration algorithm

Optimization5

We can use Bellman updates to solve this:

• We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

This leads to the classic Value Iteration algorithm

Optimization5

",-% � = min) * �, � +
"# �# = * �#, �#

", � �, �

We can use Bellman updates to solve this

• We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

",-% � = min) * �, � +
"# �# = * �#, �#

", � �, �
Sadly again the complexity scales with . 	 / 0 and those can get

HUGE fast! This is the “curse of dimensionality” again

Optimization5

We can use Bellman updates to solve this

• We can start at the goal state and then work backwards computing the
lowest cost actions to get to all states all the way back to the start state

",-% � = min) * �, � +
"# �# = * �#, �#

", � �, �
Sadly again the complexity scales with . 	 / 0 and those can get

HUGE fast! This is the “curse of dimensionality” again

Optimization5
Lets lower our expectations!

#localOptima #efficientUseOfComputers

Planning in Configuration Space5

Random Search

Machine Learning

Local Search

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

• This works well in practice (think local search)

�
By making slight perturbations to the current

trajectory (blue) we can get to the goal (orange)

�!

Trajectory Optimization5

What if instead of finding a globally optimal path we search for a locally
optimal path (off of some initial condition)?

• This works well in practice (think local search)

�1

�!

One way to do this is to do local gradient descent

Trajectory Optimization5

I’m drawing small
quadratic bowls because

most (if not all) of the
practical algorithms make

linear and quadratic
approximations of the

nonlinear functions
allowing for efficient

gradient descent

Trajectory Optimization5

I’m drawing small
quadratic bowls because

most (if not all) of the
practical algorithms make

linear and quadratic
approximations of the

nonlinear functions
allowing for efficient

gradient descent

Trajectory Optimization5

And convex optimization tells us how to

descend to the minima of a quadratic function

There are also a whole host of algorithms one can use to solve these
problems including:

• DDP, SQP, Interior-Point Methods, Trust-Region Methods, Stochastic Gradient
Descent Methods, etc.

And you can use off-the-shelf solvers to solve these problems. Popular
solvers include:

• SNOPT, IPOPT, NLOPT, fmincon (MATLAB), etc.

• Most people use off the shelf solvers!

Trajectory Optimization5

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

 Extra motions are “optimized away”

Trajectory Optimization5

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

 Extra motions are “optimized away”

Trajectory Optimization5

And optimal motions often look bio-inspired as nature

generally uses optimally efficient motions!

Atlas 1.0 Trajectory Optimization5

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even
find a feasible solution)

• Also generally slow

No free lunch strikes again!

Trajectory Optimization5

So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even
find a feasible solution)

• Also generally slow

No free lunch strikes again!

Trajectory Optimization5

Lets dive a little deeper into solvers!

Shooting Methods
(e.g., DDP, iLQR)

Direct Methods
(e.g., DIRTRAN using SQP or IP)

Pros

Cons

• Known fast

• Hard to add constraints (e.g.,

torque limits, obstacle avoidance)

• Generally people code it

themselves

• Easy to add constraints (e.g.,

torque limits, obstacle avoidance)

• Easy to leverage off the shelf

solvers (e.g., SNOPT, IPOPT)

• Considered slow

There are two popular classes of solvers5

Shooting Methods
(e.g., DDP, iLQR)

Direct Methods
(e.g., DIRTRAN using SQP or IP)

Pros

Cons

• Known fast

• Hard to add constraints (e.g.,

torque limits, obstacle avoidance)

• Generally people code it

themselves

• Easy to add constraints (e.g.,

torque limits, obstacle avoidance)

• Easy to leverage off the shelf

solvers (e.g., SNOPT, IPOPT)

• Considered slow

There are two popular classes of solvers5

Technical note: DDP reduces to a specific factorization of the

KKT matrix solve in a direct method to exploit sparsity!

Shooting Methods
(e.g., DDP, iLQR)

Direct Methods
(e.g., DIRTRAN using SQP or IP)

Pros

Cons

• Known fast

• Hard to add constraints (e.g.,

torque limits, obstacle avoidance)

• Generally people code it

themselves

• Easy to add constraints (e.g.,

torque limits, obstacle avoidance)

• Easy to leverage off the shelf

solvers (e.g., SNOPT, IPOPT)

• Considered slow

There are two popular classes of solvers5

I’ll dig a little

deeper / explain

this more in 2

weeks when I

present my

research on

parallel shooting

methods

Shooting Methods
(e.g., DDP, iLQR)

Direct Methods
(e.g., DIRTRAN using SQP or IP)

Pros

Cons

• Known fast

• Hard to add constraints (e.g.,

torque limits, obstacle avoidance)

• Generally people code it

themselves

• Easy to add constraints (e.g.,

torque limits, obstacle avoidance)

• Easy to leverage off the shelf

solvers (e.g., SNOPT, IPOPT)

• Considered slow

There are two popular classes of solvers5

Technical note: DDP is at its core a specific factorization of

the KKT matrix solve in a direct method that exploits sparsity!
But/and these

are two great

textbooks if you

want to learn

more about the

math!

Practical Challenges for Trajectory Optimization: Robustness5

1. Solvers are (numerically) sensitive to:

• Cost function designs and dynamic range

• Regularization scheme

2. Solutions are sensitive to:

• Initial state and input trajectories

• Perturbations (solutions are often on

constraint boundaries)

Manchester and Kuindersma 2017

Plancher and Kuindersma 2018

Practical Challenges for Trajectory Optimization: Contact5

Tedrake Underactuated

The physics equations

are fundamentally

different when an

object makes or breaks

contact

Practical Challenges for Trajectory Optimization: Contact5

Tedrake Underactuated

For walking these

hybrid modes form a

cyclic graph

If we pre-specify the

mode sequence and

timing we can use our

algorithms as before

FlightFlight HeelHeel

Toe Toe

Practical Challenges for Trajectory Optimization: Contact5

Manchester and Kuindersma 2017

But for complex actions these modes

start to become hard to pre-specify

Practical Challenges for Trajectory Optimization: Contact5

Doshi, et. al. 2018

But these approaches

are computationally

very expensive (read

offline) as the number

of modes explodes

combinatorically with

the number of contact

points (Mixed-Integer

Programming)!

Contact-Implicit

Trajectory

Optimization

includes the

contact timings

and mode

transitions as

state variables

Practical Challenges for Trajectory Optimization: Contact5

One approach to avoid

solving these large hard

problems is to solve the

problem on simpler

models of the system

Practical Challenges for Trajectory Optimization: Contact5

And then combine

solutions to these

(conservative) simpler

problems

Practical Challenges for Trajectory Optimization: Contact5

And then combine

solutions to these

(conservative) simpler

problems

1. Robot planning involves both task and configuration spaces

2. For many real problems, collision checking can be expensive

3. Sample Based Planners that leverage random search (RRT/PRM):

• Probabilistically complete (but can still be slow sometimes)

• Single-query (RRT) vs. Multi-query (PRM)

• Probabilistically optimal (RRT*) but generally need smoothers

4. Trajectory Optimization leverages local search to find locally

optimal (generally smooth) solutions

• Handles dynamics well but not complete or robust

• Can use off the shelf solvers (SQP) but generally slower than a solver

that exploits sparsity in the problem (DDP/iLQR)

• Contact is hard and we (sometimes) use simpler models for tractability

Key Takeaways:5

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Control is the process of executing a plan in the real world6

Well the simplest thing we could try would

be to just execute the controls from our

plan directly on the real system. This is

called Open-Loop Control!

Open Loop Control6

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

Adapted from MATLAB Control Toolbox

Open Loop Control6

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

Adapted from MATLAB Control Toolbox

Open Loop Control6

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

Adapted from MATLAB Control Toolbox

Open Loop Control6

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

Adapted from MATLAB Control Toolbox

Open Loop Control6

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

Adapted from MATLAB Control Toolbox

V2.0

Open Loop Control6

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

V2.0

Adapted from MATLAB Control Toolbox

Open Loop Control6

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

V2.0

Open loop controllers are

not robust to any changes

in the environment!

Adapted from MATLAB Control Toolbox

Feedback (Closed Loop) Control6

Adapted from MATLAB Control Toolbox

0 0.5 1 1.5 2

To
a

st
y
n

e
ss

Time (minutes)

Feedback Control6

V2.0

Adapted from MATLAB Control Toolbox

Feedback Control can lead to amazing performance!6

So how do we do Feedback Control in practice?6

Adapted from Wikipedia

So how do we do Feedback Control in practice?6

But you need to use trial and

error to pick the right K (and it

depends on your application)

Adapted from Wikipedia

So how do we do Feedback Control in practice?6

• What if we want the purple

response initially (go up fast) but

we don’t want to overshoot

• One idea is to penalize the

derivative to avoid too much slope!

Adapted from Wikipedia

So how do we do Feedback Control in practice?6

• Now we have 2 sets of gains to tune

but we can now generally get a

faster response with less overshoot

Adapted from Wikipedia

So how do we do Feedback Control in practice?6

Adapted from Wikipedia

• But what if there is still an error at

convergence (aka we want the

graph to end at 1.1 exactly)

So how do we do Feedback Control in practice?6

This is the canonical PID

controller!

Adapted from Wikipedia

So how do we do Feedback Control in practice?6

Adapted from Wikipedia

Tuning PID gains is an art

and there is a whole

literature on a variety of

methods to get

particular types of

response curves!

PID controllers work really well in practice6

Tuning gains is hard and non-intuitive is there a better way?6

Tuning gains is hard and non-intuitive is there a better way?6

Of course there is or I wouldn’t

need the transition slide!

The LQR Controller6

What if instead of specifying

gains we can specify a cost

function we want to achieve…

The LQR Controller6

What if instead of specifying

gains we can specify a cost

function we want to achieve…

Maybe something like track the

desired state but don’t use too

much energy to do it?

The LQR Controller6

What if instead of specifying

gains we can specify a cost

function we want to achieve…

Maybe something like track the

desired state but don’t use too

much energy to do it?

2(�, 3) = � − �!
56 � − �! + 3573

Deviation of the state

from some goal state
Effort (torque)

Instead of tuning

gains we can

tune cost

weights (Q,R)

which are often

more intuitive

The LQR Controller6

min8,9 : �, − �!
56 �, − �! + 3,573,

#

,/�

It turns out if we

minimize this

quadratic cost

over time with a

linear model of

the dynamics
s.t. �,-% = ;�, + <3,

3, = −=,�,

There is a closed

form solution to the

optimal feedback

controller!

(Riccati Equation)

The LQR Controller6

min8,9 : �, − �!
56 �, − �! + 3,573,

#

,/�

It turns out if we

minimize this

quadratic cost

over time with a

linear model of

the dynamics
s.t. �,-% = ;�, + <3,

There is a closed

form solution to the

optimal feedback

controller!

(Riccati Equation)

3, = −=,�,

This is used

widely in

practice!

We can also use LQR in RRT as a better metric of “distance”
and the feedback controller as the best “extend”

6

Feedback Controller for “Extend”

Cost-to-Go as “Distance Metric”

",-% � = min) * �, 3 +
"# �# = * �#, 3#

", � �, 3

Bellman Updates

[Perez et. al. LQR-RRT*]

We can also use LQR in RRT as a better metric of “distance”
and the feedback controller as the best “extend”

6

[Perez et. al. LQR-RRT*]

We can use LQR in RRT as a better metric of “distance” and
the feedback controller as the best “extend”

Unfortunately this

still doesn’t scale

well generally as

we have to sample

in �> which can

get huge fast

6

1. Real world autonomous systems need to use Feedback Control

2. PID controllers are simple and effective but require gain tuning

3. LQR controllers allow for cost function design instead

4. PID and LQR require a plan to already exist and are simply

tracking controllers

So what have we learned so far?6

1. Real world autonomous systems need to use Feedback Control

2. PID controllers are simple and effective but require gain tuning

3. LQR controllers allow for cost function design instead

4. PID and LQR require a plan to already exist and are simply

tracking controllers

 But what happens if we deviate so much from our original plan

that it is no longer valid? How do we initiate re-plans?

So what have we learned so far?6

1. Real world autonomous systems need to use Feedback Control

2. PID controllers are simple and effective but require gain tuning

3. LQR controllers allow for cost function design instead

4. PID and LQR require a plan to already exist and are simply

tracking controllers

 But what happens if we deviate so much from our original plan

that it is no longer valid? How do we initiate re-plans?

So what have we learned so far?6

This is an open unsolved problem!

Model Predictive Control: re-planning fast enough that the
plan becomes the controller!

6

�

�!

Model Predictive Control: re-planning fast enough that the
plan becomes the controller!

6

�

1. Plan a new trajectory

�!

Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

6

�

2. The new plan becomes the

reference trajectory �!

Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

6

�

�!
3. Execute the first step of the plan

Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

6

�

�!
1. Re-plan based on that step

Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

6

�

�!

2. The new plan becomes the

reference trajectory again

Model Predictive Control (MPC): re-planning fast enough
that the plan becomes the controller!

6

�

�!
3. Execute the first step of the new plan again

4. And repeat these steps until you reach the goal

[Koenemann et. al. IROS 2015][Erez et. al. Humanoids 2013][Tassa et. al. IROS 2012]

Recently MPC has been used in a variety of complex
autonomous systems in simulation and on physical robots

6

[Neunert et. al. ICRA 2016] [Neunert et. al. Humanoids 2017] [Farshidian et. al. IEEE RAL 2017]
[Plancher et. al. WAFR 2018]

[Plancher et. al. ICRA 2019]

[Koenemann et. al. IROS 2015][Erez et. al. Humanoids 2013][Tassa et. al. IROS 2012]

Recently MPC has been used in a variety of complex
autonomous systems in simulation and on physical robots

6

[Neunert et. al. ICRA 2016] [Neunert et. al. Humanoids 2017] [Farshidian et. al. IEEE RAL 2017]
[Plancher et. al. WAFR 2018]

[Plancher et. al. ICRA 2019]

I will go into far more detail on this when

I present my recent work during the

sample paper presentations!

Practical Challenges for Control: Contact6

Practical Challenges for Control: Contact6

Key Takeaways:

1. Real world autonomous systems need to use Feedback Control

2. Tracking controllers allow for simple control design and are
quite effective in practice. Two common controllers are:

1. PID with gain tuning

2. LQR with cost function design

3. Using MPC allows for the planner to be the controller which
enables more sophisticated control strategies

4. Contact is really hard!

6

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Key Takeaways:

1. NNs running on accelerator chips solve most perception problems
2. The Kalman/Particle Filter uses probability to solve the localization

problem but modeling and/or approximations are needed to run online
3. Mapping quickly becomes a memory storage problem
4. Stereo Depth and Visual Odometry also need acceleration to run online
5. Robot planning involves both task and configuration spaces
6. Collision checking can be expensive
7. Sample Based Planners (PRM, RRT, RRT*) leverage random search and

are probabilistically complete but do not scale well to high dimensions
8. Trajectory Optimization finds locally optimal paths but is not complete or

robust and (often) solved with (slow) off the shelf solvers
9. Tracking controllers (PID, LQR) work well in practice but MPC is a much

more powerful (and computationally expensive) approach
10. Contact is hard and we (sometimes) use simpler models for tractability

Key Takeaways:

1. NNs running on accelerator chips solve most perception problems
2. The Kalman/Particle Filter uses probability to solve the localization

problem but modeling and/or approximations are needed to run online
3. Mapping quickly becomes a memory storage problem
4. Stereo Depth and Visual Odometry also need acceleration to run online
5. Robot planning involves both task and configuration spaces
6. Collision checking can be expensive
7. Sample Based Planners (PRM, RRT, RRT*) leverage random search and

are probabilistically complete but do not scale well to high dimensions
8. Trajectory Optimization finds locally optimal paths but is not complete or

robust and (often) solved with (slow) off the shelf solvers
9. Tracking controllers (PID, LQR) work well in practice but MPC is a much

more powerful (and computationally expensive) approach
10. Contact is hard and we (sometimes) use simpler models for tractability

There is SO much room for

acceleration!!!!

And that’s everything!

http://bit.ly/CS249-Feedback-L2

CS 249r: Special Topics in Edge Computing
Intro to Autonomous Systems / Robotics Wrap-Up

Brian Plancher

Fall 2019

The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a
role in improving autonomous systems

What do we mean by an Autonomous System?

Real World

ActuatorsSensors Compute

Autonomous System

The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a
role in improving autonomous systems

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Key Takeaways:

1. When designing algorithms for robots you need to understand
the physical capabilities of the robot and you (potentially) need
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight,
and performance budgets for computer hardware

1 2

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Slide Credit: Todd Zickler CS 283

3 Computer Vision (and Perception in general) is hard

Slide Credit: Todd Zickler CS 283

3
CV/Perception is solved by modeling and
approximating the classification of convolution

“Classification” “Convolution”

3 We approximate convolution using linear filters

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Features

w/ Convolution

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design of filters, and the
selection/combination of features for classification

Looks like some edges

and interest points and

important color patterns

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Higher Level Features

w/ Convolution

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design of filters, and the
selection/combination of features for classification

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Classify

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design of filters, and the
selection/combination of features for classification

Classify

But watch our for adversarial attacks on the math!

3
Deep learning automates the design of filters, and the
selection/combination of features for classification

“No Free Lunch!”

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Mapping/Localization is hard4

GPS

Three Problems

1. GPS is only accurate

to O(10m)

2. GPS relies on

already having a

perfect map of the

environment

(unrealistic often)

3. Other sensor data is

also quite noisy!

Mapping/Localization is solved by modeling the world as an
HMM and using modeling and approximating to solve it

4

Hidden Markov Model (HMM)

States X update in time but we only observe the effects E

Track the Belief State �� of the

state and landmarks
�� = � ��|��, 	� ⋯ 	���

Time Update X2X1

 ����|��, �� … �� = � ��|��, �� … �� ∗ ����|��

Evidence Update
X2

E2

 ����|��, �� … ���� ∝ � ����|��, �� … �� ∗ ����|����

Mapping/Localization is solved by modeling the world as an
HMM and using modeling and approximating to solve it

4

Time Update X2X1

 ����|��, �� … �� = � ��|��, �� … �� ∗ ����|��

Evidence Update
X2

E2

 ����|��, �� … ���� ∝ � ����|��, �� … �� ∗ ����|����

Particle Filter

Elapse

Weight

Resample

Approximate

with Samples

Model

With

Gaussian

Approximate

with

Samples

Approximate

as Linear

Extended Kalman Filter (EKF)

Unscented Kalman Filter - UKF

Mapping/Localization is solved by modeling the world as an
HMM and using modeling and approximating to solve it

4

Time Update X2X1

 ����|��, �� … �� = � ��|��, �� … �� ∗ ����|��

Evidence Update
X2

E2

 ����|��, �� … ���� ∝ � ����|��, �� … �� ∗ ����|����

Particle Filter

Elapse

Weight

Resample

Approximate

with Samples

Model

With

Gaussian

Approximate

with

Samples

Approximate

as Linear

Extended Kalman Filter (EKF)

Unscented Kalman Filter - UKFModels / Approx

= Some Error

“No Free Lunch!”

Also we need to approximate the resolution of our maps and
store them intelligently to fit them in memory

4

Octomap can compresses

a 5 GB map to 230 MB

“Octomap” Hornung et. al. 2012

Autonomous Systems / Robotics is a BIG space

Mechanism

Design

Sensor

Design
Perception

Mapping &

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer Hardware

Planning (in Configuration Space) is hard5

Complexity scales with � � � � : Curse of Dimensionality

One approach is to discretize the

statespace (grid it) and use

graph search (A* = fast)

Start State

Goal State

Another is to solve a global

optimization problem:

There are three main ways to approximately plan in
Configuration Space

5

Random Search

Machine Learning

Local Search

We can approximately plan locally optimal plans in
Configuration Space in three ways

5

Random Search

Offline/Online for

“multi-query” with

PRM

Online probabilistic

completeness and

optimality with

RRT*

RRT*

RRT

We can approximately plan locally optimal plans in
Configuration Space in three ways

5

Random Search

Online probabilistic

completeness and

optimality with

RRT*

Offline/Online for

“multi-query” with

PRM

RRT*

RRT

Note: Can scale to low-dimensional

dynamical systems with LQR-RRT*

“No Free Lunch!”

We can approximately plan locally optimal plans in
Configuration Space in three ways

5

Machine Learning

My two cents:

Yes, and no free

lunch!

Needs to re-lean

physics and suffers

from sample

complexity

In two weeks more

on this!

We can approximately plan locally optimal plans in
Configuration Space in three ways

5

Local Search

Solve math

locally with

linear &

quadratic

approximations ��

��

Practical Challenges for Trajectory Optimization: Not
Complete, Not Robustness and Contact = No Free Lunch!

5

1. Not complete (aka no

guaranteed solution) and

often slow!

2. Solvers are numerically

sensitive

3. Solutions are sensitive to

initial trajectories and

perturbations

4. The physics equations are

fundamentally different when

an object makes or breaks

contact leading to a

combinatorial explosion

One approach to

avoid solving these

large hard problems is

to solve the problem

by combining simpler

models of the system

although this leads to

conservative behavior

Control is hard (even for the experts)5

We use feedback tracking controllers to run our plans in the
real world (and handle the differences encountered)

6

This is the canonical PID controller!
min",# $ �% − ��

'(�% − �� + *%'+*%
,

%��

LQR: Quadratic Cost with

Linear Dynamics

s.t. �%�� = -�% + .*%

*% = −/%�%

Solve math locally

with linear &

quadratic

approximations

Model as linear

combination of errors

and approximate

gains

We use feedback tracking controllers to run our plans in the
real world (and handle the differences encountered)

6

This is the canonical PID controller!
min",# $ �% − ��

'(�% − �� + *%'+*%
,

%��

LQR: Quadratic Cost with

Linear Dynamics

s.t. �%�� = -�% + .*%

*% = −/%�%

Solve math locally

with linear &

quadratic

approximations

Model as linear

combination of errors

and approximate

gains

And if we can plan fast enough we just use constant

replanning to control (MPC)

�0

��

We’ll see this again next Wednesday!

Practical Challenges for Control: Contact6

The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a
role in improving autonomous systems

This is what we will explore

in all of the papers!

The goal for the next couple of lectures is to develop a high
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a
role in improving autonomous systems

This is what we will explore

in all of the papers!

Your homework – get on HOTCRP

Email Glenn Holloway:

holloway@eecs.harvard.edu

He will send you a password (username is that

email address) after which I can assign you

access to review papers

