
CS249r – 2019 Nuts and Bolts



What are the prerequisites for CS 249r?

1.CS 141 and/or basic computer architecture and digital design 

2.CS 61/161 and/or a basic systems programming experience 

3.CS 124 and/or a basic algorithms experience 

We hope to have a diverse class and assume few students will have full 

exposure to the full breadth of topics we will cover. As such, we intend 

to provide some background on all of the topics. That said, students may 

find it helpful if they also have some background in some of the 

algorithms employed in autonomous systems from classes such as CS 

181/182 or AM 121. Please contact the instructor or teaching fellow if 

you are interested in taking the course but are unsure about whether the 

background you have is suitable.



So how is CS249r actually going to run?
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lectures to get everyone up to speed on 

the relevant topics from both 

Autonomous Systems / Robotics and 

Computer Systems / Architecture



So how is CS249r actually going to run?

We will provide high level background 

lectures to get everyone up to speed on 

the relevant topics from both 

Autonomous Systems / Robotics and 

Computer Systems / Architecture

Class on 9/11 will be video 

taped (but not posted 

anywhere) as I am doing a 

Bok Center teaching review. 

We will have a “no camera” 

section as well.



So how is CS249r actually going to run?

We are also going to have a day of 

sample presentations to provide a guide 

for the types of presentations we hope 

you will give on your research papers 

throughout the semester and on your 

final projects
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So how is CS249r actually going to run?

2 students per class will presentations 

on selected papers organized by topic

We have posted a tentative paper list 

to Canvas (along with PDFs and links)

Start to think about which papers you 

want as we will be allocating them in 

a week or two!

If you have an idea for a paper not on 

the list please run it by us and we 

may be willing to swap it in!
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We will simulate the conference review 

process in the middle of the term to give 

students insight into how papers are 
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So how is CS249r actually going to run?

We will simulate the conference review 

process in the middle of the term to give 

students insight into how papers are 

judged and thus accepted or rejected

We will discuss the reviews of an 

accepted paper during the example 

paper presentations

You’ll actually get to see the 

submitted version and final 

version of one of my papers 

with the actual reviews



So how is CS249r actually going to run?

Finally we wrap up the semester with a 

lot of time to work on and then present 

final projects.

Note the mid semester project proposal 

due date!



How do you get an A in CS 249r?

1. Paper Reviews – 20%

2. Paper Presentation – 20%

3. Class Participation – 10%

4. Final Project – 50%



Paper Reviews – 20%

Goals: 

1. To develop the skill of reading papers and quickly 

taking away the big picture ideas.

Assignments:

1. Submit a short “review” on each research paper read 

during the course (and submit the review 36 hours BEFORE 

the class in which it is presented)



Paper Reviews – 20%

Goals: 

1. To develop the skill of reading papers and quickly 

taking away the big picture ideas.

Assignments:

1. Submit a short “review” on each research paper read 

during the course (and submit the review 36 hours BEFORE 

the class in which it is presented)

We will use HOTCRP (the standard submission 

system from Computer Architecture Conferences)



Paper Reviews – 20%

Goals: 

1. To develop the skill of reading papers and quickly 

taking away the big picture ideas.

2. Crowdsource a best practice guide on writing papers

Assignments:

1. Submit a short “review” on each research paper read 

during the course (and submit the review 36 hours BEFORE 

the class in which it is presented)



Paper Presentation(s) – 20%

Goals: 

1. To develop the skill of understanding a paper in detail 

2. Practice presenting a (conference) paper to audience 

and teaching a concept to a class

Assignments:

1. Give at least one 18 minute presentation on a 

research paper followed by 10 minutes of Q&A (and 

meet with the course staff a week prior to your presentation)



Paper Presentation(s) – 20%

Goals: 

1. To develop the skill of understanding a paper in detail 

2. Practice presenting a (conference) paper to audience and 

teaching a concept to a class

Assignments:

1. Give at least one 18 minute presentation on a research paper 

followed by 10 minutes of Q&A (and meet with the course staff a 

week prior to your presentation)

• ~5 minutes of setup (What is the problem? Why is it important? What are the key challenges?)

• ~5 minutes of contribution (What did the author(s) do? Why was it novel?)

• ~8 minutes of context (What work did it build on /how does it compare?)



Class Participation – 10%

Goals: 

1. Practice absorbing a (conference) paper presentation

2. To give feedback to presenters

Assignments:

1. Be an active participant in class

2. Submit anonymous feedback on each presentation



Final Project – 50%

Goals: 

1. Practice being a graduate student:

a) Coming up with a research idea

b) Workshopping the idea with others / advisors 

c) Collaboratively conducting the research

d) Writing up a (conference) paper in Latex

e) Giving a presentation on the paper

Assignments:

1. Work in teams of 2-3 students to submit a project proposal 

midway through the semester and a final project report at the end 

of the semester as well as presenting that research to the class



Final Project – 50%

Goals: 

1. Practice being a graduate student:

a) Coming up with a research idea

b) Workshopping the idea with others / advisors 

c) Collaboratively conducting the research

d) Writing up a (conference) paper in Latex

e) Giving a presentation on the paper

Assignments:

1. Work in teams of 2-3 students to submit a project proposal 

midway through the semester and a final project report at the end 

of the semester as well as presenting that research to the class

We would love to find a way to incorporate 

your research into your final project



Any questions?



Quick survey of all of you

Undergrads vs Grads

Definitely vs Maybe Enrolling

Architecture vs. Robotics / Autonomous Systems vs. Neither



Ok so lets dive into a little material for next week!
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Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer   Hardware



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer   Hardware



Mechanism designers create new robots and actuators1

Katz, Di Carlo and Kim ICRA 2019



Mechanism designers create new robots and actuators1

MIT 2.74
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Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
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Sensor designers try to find new ways to collect data 
about the world around the autonomous system

2

MEMs IMUs / Gyroscopes Motor Encoders



Sensor designers try to find new ways to collect data 
about the world around the autonomous system

2

Structured Light (e.g., LIDAR)

(and other Structured Waves e.g., Sonar, 

RADAR, etc.)



Sensor designers try to find new ways to collect data 
about the world around the autonomous system
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Unstructured Light (aka Cameras) 



Sensor designers try to find new ways to collect data 
about the world around the autonomous system

2

Unstructured Light (aka Cameras) 

Computer 

Vision 

(we’ll talk 

about this 

later)

Usable 

Data



Sensor designers try to find new ways to collect data 
about the world around the autonomous system

2

http://www.gelsight.com/



Key Takeaways:

1. Different kinds of systems will have different power, weight, 
and performance budgets for computer hardware and 
requirements for control algorithms

2. Understanding the sensors on your system will help you 
understand at what rate you can get information and the 
bandwidth of the information you will need to process

3. Different kinds of sensors will require different amounts of 
onboard compute to process the information 

1 2



Our topic for next week – Compute! 
Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Robotics

1 2 3 4 5 6

Computer   Hardware



Your homework for next week 1/2

Robotics



Your homework for next week 2/2

Robotics



And finally some fun robot videos



CS 249r: Special Topics in Edge Computing
Intro to Autonomous Systems / Robotics Part 1

Brian Plancher 

Fall 2019



What do we mean by an Autonomous System?

Real World

ActuatorsSensors Compute

Autonomous System



So how is CS249r actually going to run?

Reading / Presenting Papers

Background Lectures

Final Project



So how is CS249r actually going to run?

Reading / Presenting Papers

Background Lectures

Final Project

FYI the exact dates of 

the first couple 

weeks are moving 

around a little bit



How do you get an A in CS 249r?

1. Paper Reviews – 20%

2. Paper Presentation – 20%

3. Class Participation – 10%

4. Final Project – 50%



What are the prerequisites for CS 249r?

1.CS 141 and/or basic computer architecture and digital design 

2.CS 61/161 and/or a basic systems programming experience 

3.CS 124 and/or a basic algorithms experience 

We hope to have a diverse class and assume few students will have full 

exposure to the full breadth of topics we will cover. As such, we intend 

to provide some background on all of the topics. That said, students may 

find it helpful if they also have some background in some of the 

algorithms employed in autonomous systems from classes such as CS 

181/182 or AM 121. Please contact the instructor or teaching fellow if 

you are interested in taking the course but are unsure about whether the 

background you have is suitable.



Any quick nuts and bolts questions?



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
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1 2 3 4 5 6
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The goal for the next couple of lectures is to develop a high 
level understanding of:

1. What is an autonomous system

2. Key problems for autonomous systems 

3. Some of the most important (classes of) algorithms in robotics

4. The model based vs. model free tradeoff

5. The online vs offline tradeoff

6. The no free lunch theorem and the need for approximations

7. How computer systems / architecture design has and can play a 
role in improving autonomous systems



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems
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Key Takeaways:

1. When designing algorithms for robots you need to understand 
the physical capabilities of the robot and you (potentially) need 
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight, 
and performance budgets for computer hardware

1 2



Autonomous Systems / Robotics is a BIG space
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Perception is the processing of sensor data to 
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

Sensor Data

Perception
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understand the world around the robot

3

Slide Credit: Todd Zickler CS 283

Sensor Data

Perception



We can compute the depth to objects by using 
geometry and physics

3

Unstructured Light (aka Cameras) 

Computer 

Vision
Usable 

Data

Structured Light (e.g., LIDAR)

(and other Structured Waves e.g., 

Sonar, RADAR, etc.)



We can compute the depth to objects by using 
geometry and physics

3



Stereo depth is such an important problem that Intel 
has designed a custom chip!

3



Perception is the processing of sensor data to 
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283
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Perception is the processing of sensor data to 
understand the world around the robot

3

Slide Credit: Todd Zickler CS 283



3 Computer Vision is a hard problem



Slide Credit: Hamilton Chong

What color(s) are this shirt and these pants?

3 Computer Vision is a hard problem



Slide Credit: Hamilton Chong

3 Computer Vision is a hard problem



Adelson 1995

3 Computer Vision is a hard problem



Adelson 1995

3 Computer Vision is a hard problem



3 Computer Vision is a hard problem



Slide Credit: Todd Zickler CS 283

3 Computer Vision is a hard problem



Slide Credit: Todd Zickler CS 283

So how can we 

represent this 

with an 

algorithm?

3 Computer Vision is a hard problem



Slide Credit: Todd Zickler CS 283

So how can we 

represent this 

with an 

algorithm?

3 Computer Vision is a hard problem

Well lets start by 

building up some 

intuition for how 

to find an edge!



3 Edges are where discontinuities occur in images



3 Edges are where discontinuities occur in images

Key insight: discontinuities are 

where the derivative is high!



3 Noise will corrupt our derivative computation



3 “Spatially local averaging” reduces noise



So what is a convolution of a linear filter?

3
The traditional Computer Vision approach is through 
convolution of linear filters



3 “Spatially local averaging” reduces noise



3 “Spatially local averaging” reduces noise

Ok so lets smooth and then 

take a derivative!



3 “Spatially local averaging” reduces noise

Ok so lets smooth and then 

take a derivative!

It turns out through math that 

two convolutions is the same 

as the convolution of the 

product of the filters – so lets 

just apply the derivative of a 

Gaussian filter!



�
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3
Derivatives increase noise so we can find edges using a 
derivative of Gaussian Filter
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3
Derivatives increase noise so we can find edges using a 
derivative of Gaussian Filter

But not all edges are 

vertical or horizontal 

what can we do?



�
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�
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3
Derivatives increase noise so we can find edges using a 
derivative of Gaussian Filter



3
Various filters can be used to extract features to e.g., 
stich panoramas



3
Various filters can be used to extract features to e.g., 
stich panoramas



3
But what features should we use for object 
recognition?



The ImageNet Challenge 

provided 1.2 million 

examples of 1,000 

labeled items and 

challenged algorithms to 

learn from the data and 

then was tested on 

another 100,000 images

3 The ImageNet Challenge



In 2010 teams had 

75-50% error

In 2011 teams had

75-25% error

3 The ImageNet Challenge



In 2012 still no team 

had less than 25% 

error barrier except 

AlexNet at 15%

3 The ImageNet Challenge



AlexNet: the first widely successful application of deep learning

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

3
Deep learning automates the design, selection and 
extraction of features, with amazing results



3
Deep learning automates the design, selection and 
extraction of features, with amazing results

AlexNet

Traditional Computer Vision Flow



AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and 
extraction of features, with amazing results

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Features 

w/ Convolution



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Features 

w/ Convolution

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and 
extraction of features , with amazing results

Looks like some edges 

and interest points and 

important color patterns



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and 
extraction of features, with amazing results

Summarize the 

features to get 

higher level 

features



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and 
extraction of features, with amazing results

And repeat until you have super high level features for classification



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design, selection and 
extraction of features, with amazing results

Classify



3

https://www.researchgate.net/figure/Historical-top5-error-rate-of-the-annual-

winner-of-the-ImageNet-image-classification_fig7_303992986

Deep learning automates the design, selection and 
extraction of features, with amazing results

Key Takeaway: the computer is better than 

us at determining what features are 

salient and weighting them appropriately!



Google can now even automatically caption images!3



The latest and greatest detectors can now find 
thousands of images in real-time

3



And can be used to track objects in real time3



What might be the downside to using NNs?3



3 For one, NNs can be tricked by adversarial markings
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Ackerman “Hacking the Brain With Adversarial Images”



3 For one, NNs can be tricked by adversarial markings

Ackerman “Hacking the Brain With Adversarial Images”

There is no model of 

the world semantically 

just mathematically



3
Second, (good) NN models are (often) large and 
expensive to train and compute

[Bianco et. al. Benchmark Analysis of Representative Deep Neural Network Architectures]



3
For this reason NNs (often) need accelerators to run 
online (and this is a very active area of research)

Can run in real time (35fps) at a 10X energy 

reduction over a mobile GPU (TX2?)!



Key Takeaways:3

1. As of today it seems like CNNs that automate the design and 
summary of salient features via convolution are the way to go 

• But/and will need specialized NN running on specialized accelerator 
chips to get them small enough to fit on small power constrained 
autonomous systems (e.g., small drones)

• And we will need to find ways to secure them against attacks!

2. Also, other more targeted problems such as Stereo Depth
seem to need accelerators!



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design
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Design
Perception

Mapping & 
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Mapping & Localization is the process of using perception 
information to understand where a robot is in the world

4



GPS provides a good idea of where a robot is globally…4

GPS 

Module



… but isn’t very accurate locally and requires a map4

GPS 

Module Two Problems

1. GPS is only accurate to 

O(10m)

2. GPS relies on already 

having a perfect map of 

the environment 

(unrealistic often)
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… but isn’t very accurate locally and requires a map4

Two Problems

1. GPS is only accurate to 

O(10m)

2. GPS relies on already 

having a perfect map of 

the environment 

(unrealistic often)

Localization 

Problem

Mapping Problem



We can use cameras and other sensors to measure the local 
environment but these sensors are also noisy

4



So what can we do?4

Track the Belief State �� �� = � �� = 	|Past States and Sensor Info



Let’s look at a concrete example of this in action4

10
Probabilities

t=0

Example from Michael Pfeiffer

Initialize with uniform probabilities everywhere



Let’s look at a concrete example of this in action4

10
Probabilities

t=1

Example from Michael Pfeiffer

Take initial measurement and update

Lighter grey = less likely erroneous readings



Let’s look at a concrete example of this in action4

10
Probabilities

t=2

Example from Michael Pfeiffer

Update for motion and next sensor reading



Let’s look at a concrete example of this in action4

10
Probabilities

t=3

Example from Michael Pfeiffer

Update for motion and next sensor reading



Let’s look at a concrete example of this in action4

10
Probabilities

t=4

Example from Michael Pfeiffer

Update for motion and next sensor reading



Let’s look at a concrete example of this in action4

10
Probabilities

t=5

Example from Michael Pfeiffer

Converge after motion and next sensor reading



One approach is to model the probability of being in a given 
state with a Hidden Markov Model

4

Hidden Markov Model (HMM)

States X update in time but we only observe the effects E

Track the Belief State �� �� = � 	�|	�, �� ⋯ ����

Report the mean of 

the Belief State

(which is a probability 

distribution) as our 

current best estimate 

of the state



The Kalman Filter updates the belief state (a probability 
distribution) for the passage of time and for evidence

4

Time Update X2X1

Evidence Update
X2

E2

Based on a model of 

physics usually

Based on a model of 

the sensor data 

usually

� �� !|�", #! … #� =  % � ��|�", #! … #� ∗ � �� !|�� 

� �� !|�", #! … #� ! ∝  % � �� !|�", #! … #� ∗ � #� !|�� ! 



The Kalman Filter updates the belief state (a probability 
distribution) for the passage of time and for evidence

4

Time Update X2X1

Evidence Update
X2

E2

� �� !|�", #! … #� =  % � ��|�", #! … #� ∗ � �� !|�� 

� �� !|�", #! … #� ! ∝  % � �� !|�", #! … #� ∗ � #� !|�� ! 

Based on a model of 

physics usually

Based on a model of 

the sensor data 

usually

There are a variety of 

ways to compute this 

(and we’ll highlight 4)



There are four popular ways to compute this in practice4

1. Pass the full belief 

PDF through 

nonlinear
equations for the 

motion update 

(physics) and the 

sensor update

Actual (sampling for clarity)

Actual (sampling)

van der Merwe and Wan (2001)

Most accurate but 

computationally very 

expensive (often 

intractable)



There are four popular ways to compute this in practice4

Berkely AI Material and Scott Kuindersma

Particle Filter

Elapse

Weight

Resample

Can be very accurate 

but also computation-

ally expensive (lots of 

particles)

2. Pass many 

samples through the 

nonlinear equations 

for the motion update 

(physics) and the 

sensor update and 

use the samples as a 

discrete 

approximation of the 

probability 

distribution



There are four popular ways to compute this in practice4

Dieter Fox



There are four popular ways to compute this in practice4

� �� !|�", #! … #� =  % � ��|�", #! … #� ∗ � �� !|�� What if we 

don’t want to 

sample?

X2X1



There are four popular ways to compute this in practice4
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math for a 

minute

X2X1
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� �� !|�", #! … #� =  % � ��|�", #! … #� ∗ � �� !|�� Lets do some 

math for a 

minute

X2X1

There are four popular ways to compute this in practice4

I promise its 

not that bad!
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There are four popular ways to compute this in practice4

I promise its 

not that bad!



There are four popular ways to compute this in practice4

http://www.cs.columbia.edu/~liulp/pdf/linear_normal_dist.pdf

Well if we represent the transition from one state to the next by a linear equation 

(just linearize physics) and represent P(x) as Gaussian then we can just use this simple 

linear transformation to do all of the math super fast!

� �� !|�", #! … #� =  % � ��|�", #! … #� ∗ � �� !|�� Lets do some 

math for a 

minute

X2X1



There are four popular ways to compute this in practice4

van der Merwe and Wan (2001)

Extended Kalman Filter - EKF

Simplest and least 

accurate as assumes 

Gaussian + linear

3. Assume the belief 

PDF is Gaussian
and pass it through 

linearized
equations for the 

motion update 

(physics) and the 

sensor update



There are four popular ways to compute this in practice4

van der Merwe and Wan (2001)

Unscented Kalman Filter - UKF

Moderately accurate 

but assumes Gaussian

4. Assume the belief PDF 

is Gaussian and 

pass limited 

samples through the 

nonlinear equations 

for the motion update 

(physics) and the 

sensor update and 

reconstruct the 

Gaussian on the other 

side



There are four popular ways to compute this in practice4

Hassanzadeh and Fallah 2008



There are four popular ways to compute this in practice4

Hassanzadeh and Fallah 2008 Varin and Kuindersma 2018



There are four popular ways to compute this in practice4

Hassanzadeh and Fallah 2008 Varin and Kuindersma 2018

Modeling is helpful to reduce computation but No Free Lunch!



There are four popular ways to compute this in practice4

1. Pass the full belief PDF through nonlinear equations for the motion 

update (physics) and the sensor update

Most accurate but 

computationally very 

expensive (often intractable)

2. Pass many samples through the nonlinear equations for the 

motion update (physics) and the sensor update and use the samples as 

a discrete approximation of the probability distribution

Can be very accurate but can 

also be computationally 

expensive (Particle Filter)



There are four popular ways to compute this in practice4

1. Pass the full belief PDF through nonlinear equations for the motion 

update (physics) and the sensor update

Most accurate but 

computationally very 

expensive (often intractable)

3. Assume the belief PDF is Gaussian and pass it through linearized
equations for the motion update (physics) and the sensor update

Simplest and least accurate as 

assumes linear (Extended 

Kalman Filter - EKF)

4. Assume the belief PDF is Gaussian and pass limited samples

through the nonlinear equations for the motion update (physics) and 

the sensor update and reconstruct the Gaussian on the other side

Moderately accurate but 

assumes Gaussian (Unscented 

Kalman Filter - UKF)

2. Pass many samples through the nonlinear equations for the 

motion update (physics) and the sensor update and use the samples as 

a discrete approximation of the probability distribution

Can be very accurate but can 

also be computationally 

expensive (Particle Filter)



But what if we don’t have a map of the environment?4

Two Problems

1. GPS is only accurate to 

O(10m)

2. GPS relies on already 

having a perfect map of 

the environment 

(unrealistic often)

Localization Problem

Mapping 

Problem



But what if we don’t have a map of the environment? Enter 
Simultaneous Localization and Mapping (SLAM)

4

Essentially just additionally tracking the 

belief of landmarks in the environment 

(walls, buildings, trees, etc.)

Ho and Newman 2006



But what if we don’t have a map of the environment? Enter 
Simultaneous Localization and Mapping (SLAM)

4

Essentially just additionally tracking the 

belief of landmarks in the environment 

(walls, buildings, trees, etc.)

The real hard part is figuring out when you have 

been somewhere before as measurements drift 

(the loop closure problem)

Ho and Newman 2006



SLAM with Loop Closure4



Mapping can even be done in 3D!4



However building (and even storing) maps leads to a huge 
memory problem especially on small mobile systems

4

3D grid at 10cm resolution was 

5058.76 MB (over 5 GB)

“Octomap” Hornung et. al. 2012



However building (and even storing) maps leads to a huge 
memory problem especially on small mobile systems

4

3D grid at 10cm resolution was 

5058.76 MB (over 5 GB)

Oct-tree w/ Maximum 

Likelihood metric was able to 

compress that to 230.33 MB

“Octomap” Hornung et. al. 2012



However building (and even storing) maps leads to a huge 
memory problem especially on small mobile systems

4

“Octomap” Hornung et. al. 2012



But how would we run localization online in a drone 
that is too small to carry fancy sensors?

4

Any ideas?



You can estimate the velocity of an object through 
matching interest points (Visual Odometry)…

MIT has even produced 

a chip called NAVION to 

compute this

4



…and then build a custom chip to fit it onboard!4



Key Takeaways:

1. The Kalman/Particle Filter uses probability to solve the 
localization problem but modeling and/or approximations
are needed for it to run efficiently online

2. Mapping quickly becomes a memory storage problem

3. Constrained form factors (aka tiny drones) will need novel 
accelerators to allow for autonomy

4
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Your homework for next class

Robotics

We have posted a tentative paper list 

to Canvas (along with PDFs and links)

Start to think about which papers you 

want as we will be allocating them in 

a week or two!

If you have an idea for a paper not on 

the list please run it by us and we 

may be willing to swap it in!



I’d love any Feedback!

Robotics
http://bit.ly/CS249-Feedback-L1
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Your homework for next class

Robotics

We have posted a tentative paper list 

to Canvas (along with PDFs and links)

Start to think about which papers you 

want – I will send a link to vote for 

preferences in a week or so!

If you have an idea for a paper not on 

the list please run it by us and we 

may be willing to swap it in!

Were going to use HOTCRP (linked on Canvas and 

https://www.eecs.harvard.edu/cs249r/) for these 

for Monday – you will get an email from Glenn 

Holloway with a Password to access the site. (I am 

giving him the full roster as of today)



Your homework for next class

Robotics

Click on a paper to access that paper’s page



Your homework for next class

Robotics

Then click “Write 

review” to open 

up the form to 

submit a “review”



Your homework for next class

Robotics

Then just fill it 

out and submit 

and you’ll be 

good to go!



The goal for the next couple of lectures is to develop a high 
level understanding of:

1. What is an autonomous system

2. Key problems for autonomous systems 

3. Some of the most important (classes of) algorithms in robotics

4. The model based vs. model free tradeoff

5. The online vs offline tradeoff

6. The no free lunch theorem and the need for approximations

7. How computer systems / architecture design has and can play a 
role in improving autonomous systems



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer   Hardware



Key Takeaways:

1. When designing algorithms for robots you need to understand 
the physical capabilities of the robot and you (potentially) need 
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight, 
and performance budgets for computer hardware

1 2



Key Takeaways:3

1. As of today it seems like CNNs that automate the design and summary 
of salient features via convolution are the way to go 

• But/and will need specialized NN running on specialized accelerator chips to get them small enough 
to fit on small power constrained autonomous systems (e.g., small drones)

• And we will need to find ways to secure them against attacks!

2. Also, other more targeted problems such as Stereo Depth seem to need 
accelerators!



Key Takeaways:

1. The Kalman/Particle Filter uses probability to solve the localization 
problem but modeling and/or approximations are needed for it to 
run efficiently online

2. Mapping quickly becomes a memory storage problem

3. Constrained form factors (aka tiny drones) will need novel 
accelerators to allow for autonomy

4



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer   Hardware



Planning is the process of computing an action plan for a 
robot based on the previously computed map

5
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Planning is the process of computing an action plan for a 
robot based on the previously computed map

5

Start State

Goal State

Before we can 

think about how to 

compute this we 

need to figure out 

in what state space 

are we planning?



• Task space: the 6D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the 
robot’s hand or an object
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• Task space: the 6D workspace of the robot

• E.g., the pose (x,y,z,roll,pitch,yaw) of the 
robot’s hand or an object

• Configuration space: the n-dimensional 
space of joint angles + robot world position

• Vector 

• Forward kinematics: maps q to outputs in 
task space (e.g. hand position)

• Inverse kinematics: maps task space poses 
to configuration space  

Q: Are forward and 

inverse kinematics 1 

to 1 operations?

5 Spaces and Transformations (aka where are we planning?)



Q1: What is the configuration 

space state for this 

omnidirectional robot?

5 Configuration Space



Q1: What is the configuration 

space state for this 

omnidirectional robot?

A1: (x,y) position of the 

center of the robot

5 Configuration Space



Q2: How can we map this 

robot’s world into 

configuration space?

5 Configuration Space



Well we want the robot to 

become a single (x,y) point

5 Configuration Space



5 Configuration Space So we need to inflate the 

obstacles accordinly



5 Configuration Space

• Insight: mapping task space 

obstacles and goals into 

configuration space allows us 

to plan a path for a single 

point instead of worrying 

about a full robot



5 Configuration Space

How can we map this robot

and its world into 

configuration space?



5 Configuration Space



5 How to use configuration space in practice

If we map the obstacles into configuration space we 

can check whether the configuration point, q, is in an 

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration 

space is hard
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task space obstacle collisions!

Treat the collision checker as a 

black box function evaluator!



5 How to use configuration space in practice

If we map the obstacles into configuration space we 

can check whether the configuration point, q, is in an 

obstacle and we have a unique plan for the robot

• Problem: mapping obstacles into configuration 

space is hard

Better approach: use forward kinematics to check 

task space obstacle collisions!

• No free lunch – Now each collision check

requires full kinematics and not a simple lookup



Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ�   Actions: Δq Transition:



Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ�   Actions: Δq Transition:

� ∈ ��: (x,y,z,θ,φ,ϕ)
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and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ�   Actions: Δq Transition:



Planning in Configuration Space5

Start State

Goal State

One approach is to discretize the statespace (grid it) 

and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ�   Actions: Δq Transition:

Unfortunately if we use say 100 discrete steps in 

each direction we get:

	 = ����



Planning in Configuration Space5

One approach is to discretize the statespace (grid it) 

and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ
�   Actions: Δq Transition:

Unfortunately if we use say 100 discrete steps in 

each direction we get:

	 = ����A
B

(2 ankles + 2 knees + 2 

hips + 2 shoulders + 2 

elbows + 4 fingers + pose 

of com) = ~�� variables



Unfortunately if we use say 100 discrete steps in 

each direction we get:

	 = �����

Planning in Configuration Space5

One approach is to discretize the statespace (grid it) 

and use graph search (think A* which is known fast)

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ
�   Actions: Δq Transition:

Curse of Dimensionality!

A
B



Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ�   Actions: Δq Transition:

So if we can’t explicitly 

form the graph and 

search the configuration 

space what can we do?



Planning in Configuration Space5

Start State

Goal State

Goal: Find shortest collision-free path from start to goal

States: configurations � ∈ ℛ�   Actions: Δq Transition:

What if we incrementally 

build up a path toward the 

goal?



Planning in Configuration Space5

Random Search

Machine Learning

Local Search



The main idea is to use randomness to 

rapidly explore an entire state space to find a 

path from a given start location to the goal.

One of the most famous robot motion planning 

algorithms is Rapidly Exploring Random 

Trees (RRTs) [Lavalle & Kuffner]

Rapidly Exploring Random Trees (RRTs)5



Key idea: uniform random sampling in configuration space is 

actually a heuristic that encourages exploration!

To see this we use Voronoi regions
Def: Voronoi region is the set of points in space that are closest to a 

particular node in the tree:

5 Randomness encourages exploration
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5 Randomness encourages exploration



s0

sgoal

Algorithm (input: s0, sgoal, initial 

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a 

path from s0 to sgoal

Rapidly Exploring Random Trees (RRTs)5
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state tree T)
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Rapidly Exploring Random Trees (RRTs)5 Extend distance trades 

off sample vs. 

computational efficiency
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s0

sgoal

Algorithm (input: s0, sgoal, initial 

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a 

path from s0 to sgoal

s

Rapidly Exploring Random Trees (RRTs)5

It will always find a solution because 

it is probabilistically complete



Rapidly Exploring Random Trees (RRTs)5



Rapidly Exploring Random Trees (RRTs)5

Biased 

sampling 

can help!



RRTs often works really well in practice5



RRTs often works really well in practice5



Questions about the RRT algorithm?5

s0

sgoal

Algorithm (input: s0, sgoal, initial 

state tree T)

• Sample states s ∈ S = Rn

until s is collision-free

• Find closest state sc ∈ T

• Extend sc toward s

• Add resulting state s’ to T

• Repeat until T contains a 

path from s0 to sgoal

s



But we can get some WEIRD outputs…5
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But we can get some WEIRD outputs…5

RRT is not optimal (cost of paths are not considered)

 This is an example of “feasible motion planning”



We solve this problem with RRT*5

The big trick: 

• incrementally “re-wiring” the tree to 

keep locally optimal paths



We solve this problem with RRT*5

RRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to 

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

sgoal

s0

s’
sc

2

3

3

2

1

s



sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T
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sgoalRRT* (input: s0, sgoal, initial state tree T)

• Sample states s ∈ S = R15 until s is collision-

free (often goal directed)

• Find closest state sc ∈ T

• Extend sc toward s resulting in state s’

• Find all snear ⊆ T within a distance d to s’

• Find smin ∈ snear, that has the lowest path cost

to s0 -> smin -> s’

• Add edge smin -> s’ to T

• Check path cost through s’ to all states in s ∈
snear, if any are lower than existing path cost to 

s, then “rewire” tree to include edge s’ -> s

• Repeat until maximum iterations reached and T

contains a path from s0 to sgoal

s0

s’
sc

2

3
2

1
“nearest” states

2

smin

We solve this problem with RRT*5
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We solve this problem with RRT*5

RRT RRT*



sgoal

s0

2

3
2

1

2

sgoal

s0

s’
sc

2

3

3

2

1

We solve this problem with RRT*5 Nearest radius size is 

another sample vs. 

computational 

efficiency decision!



[Karaman & Fazzoli Sampling-based Algorithms for Optimal Motion Planning]

RRT*

RRT

RRT*5



1. Robot planning usually involves thinking about both task and 

configuration spaces

2. For many real problems, collision checking can be expensive

3. RRT: a powerful algorithm based on a very simple idea!

• Probabilistically complete: If there’s a solution it will find it 

eventually (but can still be slow for some problems)!

• BUT RRT is not optimal (cost of paths are not considered)

 This is an example of “feasible motion planning”

 RRT* fixes that by incrementally rewiring the tree

So what have we learned so far?5



1. Why might RRTs not be the best algorithmic choice for a robot that 

repeatedly does the same task? 

2. How might you adapt RRT to fix this issue?

To RRT or not to RRT that is the question!5
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1. Why might RRTs not be the best algorithmic choice for a robot that 

repeatedly does the same task? 

2. How might you adapt RRT to fix this issue?

This “multi-query” approach is called Probabilistic Roadmaps (PRMs)

1. RRT is a “single-query” algorithm – it starts from scratch each time 

“forgetting” all of the connections it found in previous solves

2. Instead of building a tree lets build a reusable graph G

To RRT or not to RRT that is the question!5



Step 1: Offline build a random graph G that covers the state space

Probabilistic Roadmaps (PRMs) leverage an offline and an 
online computation phase
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Probabilistic Roadmaps (PRMs) leverage an offline and an 
online computation phase
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Step 2: Online connect the start and goal nodes and run graph search



[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]

Collision detection for each connecting path in the 
construction of the PRM can be very expensive
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[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]

Collision detection for each connecting path in the 
construction of the PRM can be very expensive

5

And if the obstacles 

move we have to 

recompute!



[Murray et. al. The Microarchitecture of a Real-Time Robot Motion Planning Accelerator]

But with custom 

hardware this can be 

accelerated!

Collision detection for each connecting path in the 
construction of the PRM can be very expensive

5



Custom hardware can lead to near-instantaneous collision 
checking!
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Custom hardware can lead to near-instantaneous collision 
checking!

5

We’ll read this paper later so I’m not 

going to get into the details!



Custom hardware can lead to near-instantaneous collision 
checking!

5

Realtime Robotics



Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?
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The Simplest “Robot”

• States: � = �, �� aka angle and 

angular velocity

• Actions: � = � aka torque at joint 

• Transitions: �’ = �(�, �) aka physics

Dynamics (aka Physics)

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?
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Challenges for Dynamic RRTs

The “extend” operation is complex!

• We need to solve a boundary value 

problem (find a path from sc to s such 

that it follows the dynamics)

• Basically a “mini” planning problems
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Challenges for Dynamic RRTs

The “extend” operation is complex!

• We need to solve a boundary value 

problem (find a path from sc to s such 

that it follows the dynamics)

• Basically a “mini” planning problemsQ: Why don’t we just try 

a discretization of 

possible actions instead 

of solving a boundary 

value problem?

S

	�

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5



Task: start from the stable 

downward equilibrium (0,0) 

and swing up to the unstable 

upward equilibrium (�,0) 
• States: � = �, �� aka angle and 

angular velocity

• Actions: � = � aka torque at joint 

• Transitions: �’ = �(�, �) aka physics

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?
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So even if we ignore the 

“extend” issue, “distance” 

is still a problem



Challenges for Dynamic RRTs

The “extend” operation is complex!

• We need to solve a boundary value 

problem (find a path from sc to s such 

that it follows the dynamics)

• Basically a “mini” planning problems

What is the “closest state in the tree”

• The “distance” between states of 

dynamical systems is not well-defined

Ok so why can’t robots use these awesome kinematic
planning algorithms all the time and be better at life?!?

5



So what do we do?5



So what do we do?5

Give up and make 

the computer solve 

it for us?



So what do we do?5

Give up and make 

the computer solve 

it for us?

#Learning

#EfficientUseOfHumans



Planning in Configuration Space5

Random Search

Machine Learning

Local Search



My two cents:

Yes, And…

Guest Lecture in two weeks: Can I make the computer learn
all of this for me automatically?
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So what else can we do?5

Its actually not that 

bad and the math 

isn’t actually that 

scary I promise!



We can write the planning problem down as an optimization problem!

Optimization5

� 

�!



We can write the planning problem down as an optimization problem!

Minimize a cost in each state 

(e.g., energy used)

Obey physics

Get to the goal

Optimization5



We can use Bellman updates to solve this:

• We can start at the goal state and then work backwards computing the 
lowest cost actions to get to all states all the way back to the start state

"#$% � = min) * �#$%, �#$% +
"# �# = * �#, �#

"# � �#$%, �#$%

This leads to the classic Value Iteration algorithm

Optimization5
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This leads to the classic Value Iteration algorithm

Optimization5
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We can use Bellman updates to solve this

• We can start at the goal state and then work backwards computing the 
lowest cost actions to get to all states all the way back to the start state
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Sadly again the complexity scales with . 	 / 0 and those can get 

HUGE fast! This is the “curse of dimensionality” again
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We can use Bellman updates to solve this

• We can start at the goal state and then work backwards computing the 
lowest cost actions to get to all states all the way back to the start state

",-% � = min) * �, � +
"# �# = * �#, �#

", � �, �
Sadly again the complexity scales with . 	 / 0 and those can get 

HUGE fast! This is the “curse of dimensionality” again

Optimization5
Lets lower our expectations! 

#localOptima #efficientUseOfComputers



Planning in Configuration Space5

Random Search

Machine Learning

Local Search



What if instead of finding a globally optimal path we search for a locally 
optimal path (off of some initial condition)?

• This works well in practice (think local search)

� 
By making slight perturbations to the current 

trajectory (blue) we can get to the goal (orange)

�!

Trajectory Optimization5



What if instead of finding a globally optimal path we search for a locally 
optimal path (off of some initial condition)?

• This works well in practice (think local search)

�1

�!

One way to do this is to do local gradient descent

Trajectory Optimization5



I’m drawing small 
quadratic bowls because 

most (if not all) of the 
practical algorithms make 

linear and quadratic 
approximations of the 

nonlinear functions 
allowing for efficient

gradient descent

Trajectory Optimization5



I’m drawing small 
quadratic bowls because 

most (if not all) of the 
practical algorithms make 

linear and quadratic 
approximations of the 

nonlinear functions 
allowing for efficient

gradient descent

Trajectory Optimization5

And convex optimization tells us how to 

descend to the minima of a quadratic function



There are also a whole host of algorithms one can use to solve these 
problems including:

• DDP, SQP, Interior-Point Methods, Trust-Region Methods, Stochastic Gradient 
Descent Methods, etc.

And you can use off-the-shelf solvers to solve these problems. Popular 
solvers include:

• SNOPT, IPOPT, NLOPT, fmincon (MATLAB), etc.

• Most people use off the shelf solvers!

Trajectory Optimization5



So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

 Extra motions are “optimized away”

Trajectory Optimization5



So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

 Extra motions are “optimized away”

Trajectory Optimization5

And optimal motions often look bio-inspired as nature 

generally uses optimally efficient motions!



Atlas 1.0 Trajectory Optimization5



So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even 
find a feasible solution)

• Also generally slow

No free lunch strikes again!

Trajectory Optimization5



So trajectory optimization solves everything right?

• Can handle full robot dynamics

• No need for distance metrics

• Can use off the shelf solvers reducing the coding burden

• Finds a locally optimal solution – no weird paths coming out!

But….

• Not globally optimal (will often get stuck in local minima)

• Not even complete (problems are often non-convex so it may not even 
find a feasible solution)

• Also generally slow

No free lunch strikes again!

Trajectory Optimization5

Lets dive a little deeper into solvers!



Shooting Methods
(e.g., DDP, iLQR)

Direct Methods
(e.g., DIRTRAN using SQP or IP)

Pros

Cons

• Known fast

• Hard to add constraints (e.g., 

torque limits, obstacle avoidance)

• Generally people code it 

themselves

• Easy to add constraints (e.g., 

torque limits, obstacle avoidance)

• Easy to leverage off the shelf 

solvers (e.g., SNOPT, IPOPT)

• Considered slow

There are two popular classes of solvers5
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Technical note: DDP reduces to a specific factorization of the 

KKT matrix solve in a direct method to exploit sparsity!



Shooting Methods
(e.g., DDP, iLQR)

Direct Methods
(e.g., DIRTRAN using SQP or IP)

Pros

Cons

• Known fast

• Hard to add constraints (e.g., 

torque limits, obstacle avoidance)

• Generally people code it 

themselves

• Easy to add constraints (e.g., 

torque limits, obstacle avoidance)

• Easy to leverage off the shelf 

solvers (e.g., SNOPT, IPOPT)

• Considered slow

There are two popular classes of solvers5

I’ll dig a little 

deeper / explain 

this more in 2 

weeks when I 

present my 

research on 

parallel shooting 

methods



Shooting Methods
(e.g., DDP, iLQR)

Direct Methods
(e.g., DIRTRAN using SQP or IP)

Pros

Cons

• Known fast

• Hard to add constraints (e.g., 

torque limits, obstacle avoidance)

• Generally people code it 

themselves

• Easy to add constraints (e.g., 

torque limits, obstacle avoidance)

• Easy to leverage off the shelf 

solvers (e.g., SNOPT, IPOPT)

• Considered slow

There are two popular classes of solvers5

Technical note: DDP is at its core a specific factorization of 

the KKT matrix solve in a direct method that exploits sparsity!
But/and these 

are two great 

textbooks if you 

want to learn 

more about the 

math!



Practical Challenges for Trajectory Optimization: Robustness5

1. Solvers are (numerically) sensitive to:

• Cost function designs and dynamic range

• Regularization scheme

2. Solutions are sensitive to:

• Initial state and input trajectories

• Perturbations (solutions are often on 

constraint boundaries)

Manchester and Kuindersma 2017

Plancher and Kuindersma 2018



Practical Challenges for Trajectory Optimization: Contact5

Tedrake Underactuated

The physics equations 

are fundamentally 

different when an 

object makes or breaks 

contact



Practical Challenges for Trajectory Optimization: Contact5

Tedrake Underactuated

For walking these 

hybrid modes form a 

cyclic graph

If we pre-specify the 

mode sequence and 

timing we can use our 

algorithms as before

FlightFlight HeelHeel

Toe Toe



Practical Challenges for Trajectory Optimization: Contact5

Manchester and Kuindersma 2017

But for complex actions these modes 

start to become hard to pre-specify



Practical Challenges for Trajectory Optimization: Contact5

Doshi, et. al. 2018

But these approaches 

are computationally 

very expensive (read 

offline) as the number 

of modes explodes 

combinatorically with 

the number of contact 

points (Mixed-Integer 

Programming)!

Contact-Implicit 

Trajectory 

Optimization 

includes the 

contact timings 

and mode 

transitions as 

state variables



Practical Challenges for Trajectory Optimization: Contact5

One approach to avoid 

solving these large hard 

problems is to solve the 

problem on simpler 

models of the system



Practical Challenges for Trajectory Optimization: Contact5

And then combine 

solutions to these 

(conservative) simpler 

problems



Practical Challenges for Trajectory Optimization: Contact5

And then combine 

solutions to these 

(conservative) simpler 

problems



1. Robot planning involves both task and configuration spaces

2. For many real problems, collision checking can be expensive

3. Sample Based Planners that leverage random search (RRT/PRM):

• Probabilistically complete (but can still be slow sometimes)

• Single-query (RRT) vs. Multi-query (PRM)

• Probabilistically optimal (RRT*) but generally need smoothers

4. Trajectory Optimization leverages local search to find locally 

optimal (generally smooth) solutions

• Handles dynamics well but not complete or robust

• Can use off the shelf solvers (SQP) but generally slower than a solver 

that exploits sparsity in the problem (DDP/iLQR)

• Contact is hard and we (sometimes) use simpler models for tractability

Key Takeaways:5



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer   Hardware



Control is the process of executing a plan in the real world6

Well the simplest thing we could try would 

be to just execute the controls from our 

plan directly on the real system. This is 

called Open-Loop Control!



Open Loop Control6
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Open Loop Control6
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V2.0

Open loop controllers are 

not robust to any changes 

in the environment!

Adapted from MATLAB Control Toolbox



Feedback (Closed Loop) Control6

Adapted from MATLAB Control Toolbox
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Feedback Control6

V2.0

Adapted from MATLAB Control Toolbox



Feedback Control can lead to amazing performance!6



So how do we do Feedback Control in practice?6

Adapted from Wikipedia



So how do we do Feedback Control in practice?6

But you need to use trial and 

error to pick the right K (and it 

depends on your application)

Adapted from Wikipedia



So how do we do Feedback Control in practice?6

• What if we want the purple 

response initially (go up fast) but 

we don’t want to overshoot

• One idea is to penalize the 

derivative to avoid too much slope!

Adapted from Wikipedia



So how do we do Feedback Control in practice?6

• Now we have 2 sets of gains to tune 

but we can now generally get a 

faster response with less overshoot

Adapted from Wikipedia



So how do we do Feedback Control in practice?6

Adapted from Wikipedia

• But what if there is still an error at 

convergence (aka we want the 

graph to end at 1.1 exactly) 



So how do we do Feedback Control in practice?6

This is the canonical PID 

controller!

Adapted from Wikipedia



So how do we do Feedback Control in practice?6

Adapted from Wikipedia

Tuning PID gains is an art 

and there is a whole 

literature on a variety of 

methods to get 

particular types of 

response curves!



PID controllers work really well in practice6



Tuning gains is hard and non-intuitive is there a better way?6



Tuning gains is hard and non-intuitive is there a better way?6

Of course there is or I wouldn’t 

need the transition slide!



The LQR Controller6

What if instead of specifying 

gains we can specify a cost 

function we want to achieve…
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gains we can specify a cost 
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Maybe something like track the 

desired state but don’t use too 

much energy to do it?



The LQR Controller6

What if instead of specifying 

gains we can specify a cost 

function we want to achieve…

Maybe something like track the 

desired state but don’t use too 

much energy to do it?

2(�, 3) = � − �!
56 � − �! + 3573

Deviation of the state 

from some goal state
Effort (torque)

Instead of tuning 

gains we can 

tune cost 

weights (Q,R) 

which are often 

more intuitive



The LQR Controller6

min8,9 : �, − �!
56 �, − �! + 3,573,

#

,/�

It turns out if we 

minimize this 

quadratic cost 

over time with a 

linear model of 

the dynamics
s.t. �,-% = ;�, + <3,

3, = −=,�,

There is a closed 

form solution to the 

optimal feedback 

controller!

(Riccati Equation)



The LQR Controller6

min8,9 : �, − �!
56 �, − �! + 3,573,

#

,/�

It turns out if we 

minimize this 

quadratic cost 

over time with a 

linear model of 

the dynamics
s.t. �,-% = ;�, + <3,

There is a closed 

form solution to the 

optimal feedback 

controller!

(Riccati Equation)

3, = −=,�,

This is used 

widely in 

practice!



We can also use LQR in RRT as a better metric of “distance” 
and the feedback controller as the best “extend”

6

Feedback Controller for “Extend”

Cost-to-Go as “Distance Metric”

",-% � = min) * �, 3 +
"# �# = * �#, 3#

", � �, 3

Bellman Updates



[Perez et. al. LQR-RRT*]

We can also use LQR in RRT as a better metric of “distance” 
and the feedback controller as the best “extend”

6



[Perez et. al. LQR-RRT*]

We can use LQR in RRT as a better metric of “distance” and 
the feedback controller as the best “extend”

Unfortunately this 

still doesn’t scale 

well generally as 

we have to sample 

in �> which can 

get huge fast

6



1. Real world autonomous systems need to use Feedback Control

2. PID controllers are simple and effective but require gain tuning

3. LQR controllers allow for cost function design instead

4. PID and LQR require a plan to already exist and are simply 

tracking controllers

So what have we learned so far?6
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1. Real world autonomous systems need to use Feedback Control

2. PID controllers are simple and effective but require gain tuning

3. LQR controllers allow for cost function design instead

4. PID and LQR require a plan to already exist and are simply 

tracking controllers

 But what happens if we deviate so much from our original plan 

that it is no longer valid? How do we initiate re-plans?

So what have we learned so far?6

This is an open unsolved problem!



Model Predictive Control: re-planning fast enough that the 
plan becomes the controller!

6

� 

�!



Model Predictive Control: re-planning fast enough that the 
plan becomes the controller!

6

� 

1. Plan a new trajectory

�!



Model Predictive Control (MPC): re-planning fast enough 
that the plan becomes the controller!

6

� 

2. The new plan becomes the 

reference trajectory �!



Model Predictive Control (MPC): re-planning fast enough 
that the plan becomes the controller!

6
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3. Execute the first step of the plan



Model Predictive Control (MPC): re-planning fast enough 
that the plan becomes the controller!

6

� 

�!
1. Re-plan based on that step



Model Predictive Control (MPC): re-planning fast enough 
that the plan becomes the controller!

6

� 

�!

2. The new plan becomes the 

reference trajectory again



Model Predictive Control (MPC): re-planning fast enough 
that the plan becomes the controller!

6

� 

�!
3. Execute the first step of the new plan again

4. And repeat these steps until you reach the goal



[Koenemann et. al. IROS 2015][Erez et. al. Humanoids 2013][Tassa et. al. IROS 2012]

Recently MPC has been used in a variety of complex 
autonomous systems in simulation and on physical robots

6

[Neunert et. al. ICRA 2016] [Neunert et. al. Humanoids 2017] [Farshidian et. al. IEEE RAL 2017]
[Plancher et. al. WAFR 2018]

[Plancher et. al. ICRA 2019]



[Koenemann et. al. IROS 2015][Erez et. al. Humanoids 2013][Tassa et. al. IROS 2012]

Recently MPC has been used in a variety of complex 
autonomous systems in simulation and on physical robots

6

[Neunert et. al. ICRA 2016] [Neunert et. al. Humanoids 2017] [Farshidian et. al. IEEE RAL 2017]
[Plancher et. al. WAFR 2018]

[Plancher et. al. ICRA 2019]

I will go into far more detail on this when 

I present my recent work during the 

sample paper presentations!



Practical Challenges for Control: Contact6



Practical Challenges for Control: Contact6



Key Takeaways:

1. Real world autonomous systems need to use Feedback Control

2. Tracking controllers allow for simple control design and are 
quite effective in practice. Two common controllers are:

1. PID with gain tuning

2. LQR with cost function design

3. Using MPC allows for the planner to be the controller which 
enables more sophisticated control strategies

4. Contact is really hard!

6
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Key Takeaways:

1. NNs running on accelerator chips solve most perception problems 
2. The Kalman/Particle Filter uses probability to solve the localization 

problem but modeling and/or approximations are needed to run online
3. Mapping quickly becomes a memory storage problem
4. Stereo Depth and Visual Odometry also need acceleration to run online
5. Robot planning involves both task and configuration spaces
6. Collision checking can be expensive
7. Sample Based Planners (PRM, RRT, RRT*) leverage random search and 

are probabilistically complete but do not scale well to high dimensions
8. Trajectory Optimization finds locally optimal paths but is not complete or 

robust and (often) solved with (slow) off the shelf solvers
9. Tracking controllers (PID, LQR) work well in practice but MPC is a much 

more powerful (and computationally expensive) approach
10. Contact is hard and we (sometimes) use simpler models for tractability



Key Takeaways:

1. NNs running on accelerator chips solve most perception problems 
2. The Kalman/Particle Filter uses probability to solve the localization 

problem but modeling and/or approximations are needed to run online
3. Mapping quickly becomes a memory storage problem
4. Stereo Depth and Visual Odometry also need acceleration to run online
5. Robot planning involves both task and configuration spaces
6. Collision checking can be expensive
7. Sample Based Planners (PRM, RRT, RRT*) leverage random search and 

are probabilistically complete but do not scale well to high dimensions
8. Trajectory Optimization finds locally optimal paths but is not complete or 

robust and (often) solved with (slow) off the shelf solvers
9. Tracking controllers (PID, LQR) work well in practice but MPC is a much 

more powerful (and computationally expensive) approach
10. Contact is hard and we (sometimes) use simpler models for tractability

There is SO much room for 

acceleration!!!!



And that’s everything!

http://bit.ly/CS249-Feedback-L2
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The goal for the next couple of lectures is to develop a high 
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems 

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a 
role in improving autonomous systems



What do we mean by an Autonomous System?

Real World

ActuatorsSensors Compute

Autonomous System



The goal for the next couple of lectures is to develop a high 
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems 

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a 
role in improving autonomous systems
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Key Takeaways:

1. When designing algorithms for robots you need to understand 
the physical capabilities of the robot and you (potentially) need 
to understand how to model its physical behaviors

2. Different kinds of systems will have different power, weight, 
and performance budgets for computer hardware

1 2
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Slide Credit: Todd Zickler CS 283

3 Computer Vision (and Perception in general) is hard



Slide Credit: Todd Zickler CS 283

3
CV/Perception is solved by modeling and 
approximating the classification of convolution

“Classification” “Convolution”



3 We approximate convolution using linear filters



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Features 

w/ Convolution

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design of filters, and the 
selection/combination of features for classification

Looks like some edges 

and interest points and 

important color patterns



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Extract Higher Level Features 

w/ Convolution

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design of filters, and the 
selection/combination of features for classification



https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

https://cv-tricks.com/cnn/understand-resnet-alexnet-vgg-inception/

Classify

AlexNet: the first widely successful application of deep learning

3
Deep learning automates the design of filters, and the 
selection/combination of features for classification



Classify

But watch our for adversarial attacks on the math!

3
Deep learning automates the design of filters, and the 
selection/combination of features for classification

“No Free Lunch!”



Autonomous Systems / Robotics is a BIG space

Mechanism 

Design

Sensor 

Design
Perception

Mapping & 

Localization
Planning Control

Hardware Focus Software Focus

Autonomous Systems

1 2 3 4 5 6

Computer   Hardware



Mapping/Localization is hard4

GPS

Three Problems

1. GPS is only accurate 

to O(10m)

2. GPS relies on 

already having a 

perfect map of the 

environment 

(unrealistic often)

3. Other sensor data is 

also quite noisy!



Mapping/Localization is solved by modeling the world as an 
HMM and using modeling and approximating to solve it

4

Hidden Markov Model (HMM)

States X update in time but we only observe the effects E

Track the Belief State �� of the 

state and landmarks
�� = � ��|��, 	� ⋯ 	���

Time Update X2X1


 ����|��, �� … �� =  � 
 ��|��, �� … �� ∗ 
 ����|�� 

Evidence Update
X2

E2


 ����|��, �� … ���� ∝  � 
 ����|��, �� … �� ∗ 
 ����|���� 



Mapping/Localization is solved by modeling the world as an 
HMM and using modeling and approximating to solve it

4

Time Update X2X1
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Particle Filter

Elapse

Weight

Resample

Approximate 

with Samples
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With 

Gaussian

Approximate 
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Samples

Approximate 

as Linear

Extended Kalman Filter (EKF)

Unscented Kalman Filter - UKF



Mapping/Localization is solved by modeling the world as an 
HMM and using modeling and approximating to solve it

4

Time Update X2X1


 ����|��, �� … �� =  � 
 ��|��, �� … �� ∗ 
 ����|�� 

Evidence Update
X2

E2


 ����|��, �� … ���� ∝  � 
 ����|��, �� … �� ∗ 
 ����|���� 

Particle Filter

Elapse

Weight

Resample

Approximate 

with Samples

Model 

With 

Gaussian

Approximate 

with 

Samples

Approximate 

as Linear

Extended Kalman Filter (EKF)

Unscented Kalman Filter - UKFModels / Approx

= Some Error

“No Free Lunch!”



Also we need to approximate the resolution of our maps and 
store them intelligently to fit them in memory 

4

Octomap can compresses 

a 5 GB map to 230 MB

“Octomap” Hornung et. al. 2012



Autonomous Systems / Robotics is a BIG space
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Planning (in Configuration Space) is hard5

Complexity scales with � � � � : Curse of Dimensionality

One approach is to discretize the 

statespace (grid it) and use 

graph search (A* = fast)

Start State

Goal State

Another is to solve a global 

optimization problem:



There are three main ways to approximately plan in 
Configuration Space

5

Random Search

Machine Learning

Local Search



We can approximately plan locally optimal plans in 
Configuration Space in three ways

5

Random Search

Offline/Online for 

“multi-query” with 

PRM

Online probabilistic 

completeness and 

optimality with 

RRT*

RRT*

RRT



We can approximately plan locally optimal plans in 
Configuration Space in three ways

5

Random Search

Online probabilistic 

completeness and 

optimality with 

RRT*

Offline/Online for 

“multi-query” with 

PRM

RRT*

RRT

Note: Can scale to low-dimensional 

dynamical systems with LQR-RRT*

“No Free Lunch!”



We can approximately plan locally optimal plans in 
Configuration Space in three ways

5

Machine Learning

My two cents:

Yes, and no free 

lunch!

Needs to re-lean 

physics and suffers 

from sample 

complexity 

In two weeks more 

on this!



We can approximately plan locally optimal plans in 
Configuration Space in three ways

5

Local Search

Solve math 

locally with 

linear & 

quadratic 

approximations ��

��



Practical Challenges for Trajectory Optimization: Not 
Complete, Not Robustness and Contact = No Free Lunch!

5

1. Not complete (aka no 

guaranteed solution) and 

often slow!

2. Solvers are numerically 

sensitive

3. Solutions are sensitive to 

initial trajectories and 

perturbations

4. The physics equations are 

fundamentally different when 

an object makes or breaks 

contact leading to a 

combinatorial explosion

One approach to 

avoid solving these 

large hard problems is 

to solve the problem 

by combining simpler 

models of the system 

although this leads to 

conservative behavior



Control is hard (even for the experts)5



We use feedback tracking controllers to run our plans in the 
real world (and handle the differences encountered)

6

This is the canonical PID controller!
min",# $ �% − ��

'( �% − �� +  *%'+*%
,

%��

LQR: Quadratic Cost with 

Linear Dynamics

s.t. �%�� = -�% + .*%

*% = −/%�%

Solve math locally 

with linear & 

quadratic 

approximations

Model as linear 

combination of errors 

and approximate 

gains



We use feedback tracking controllers to run our plans in the 
real world (and handle the differences encountered)

6

This is the canonical PID controller!
min",# $ �% − ��

'( �% − �� +  *%'+*%
,

%��

LQR: Quadratic Cost with 

Linear Dynamics

s.t. �%�� = -�% + .*%

*% = −/%�%

Solve math locally 

with linear & 

quadratic 

approximations

Model as linear 

combination of errors 

and approximate 

gains

And if we can plan fast enough we just use constant 

replanning to control (MPC)

�0

��

We’ll see this again next Wednesday!



Practical Challenges for Control: Contact6



The goal for the next couple of lectures is to develop a high 
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems 

3. Some of the most important (classes of) algorithms in robotics

A. The model based vs. model free tradeoff

B. The online vs offline tradeoff

C. The no free lunch theorem and the need for approximations

4. How computer systems / architecture design has and can play a 
role in improving autonomous systems

This is what we will explore 

in all of the papers!



The goal for the next couple of lectures is to develop a high 
level understanding of:

1. What is an autonomous system

2. Key problems and constraints for autonomous systems 
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in all of the papers!



Your homework – get on HOTCRP

Email Glenn Holloway: 

holloway@eecs.harvard.edu

He will send you a password (username is that 

email address) after which I can assign you 

access to review papers


