
Optimizing at All Scales: Edge (Non)linear Model Predictive Control from MCUs to GPUs
Emre Adabag1*, Xuyei Bu1*, Khai Nguyen2*, Sam Schoedel3*,

Anoushka Alavilli4, Miloni Atal1, William Gerard1, Elakhya Nedurmaran4,
Zac Manchester3, and Brian Plancher5

1: Fu Foundaiton School of Engineering and Applied Science, 5: Barnard College, Columbia University
2: Mechanical Engineering, 3: Robotics Institute, 4: Electrical & Computer Engineering, Carnegie Mellon University

The Big Picture:
In our recent works, by leveraging a combination of parallelism, approximation, and structure exploitation,
we have enabled and accelerated (nonlinear) trajectory optimization solvers for real-time performance on
non-standard computational hardware, ranging from microcontrollers (MCUs) to graphical processing units
(GPUs). This has led to real-time MPC onboard an MCU powered 27g quadrotor for dynamic obstacle
avoidance, as well as simulated whole-body nonlinear MPC at kHz rates for a GPU powered manipulator
for high speed trajectory tracking.

Model Predictive Control Background:
In most Model Predictive Control (MPC) formulations, a trajectory optimization problem is used to re-
optimize the robot’s trajectory at each control step. These problems computes a robot’s optimal path through
an environment as a series of states, 𝑥, and controls, 𝑢, by minimizing a cost function, 𝑙(⋅), subject to discrete
time dynamics, 𝑓(⋅), and additional constraints, 𝑔(⋅), (e.g., obstacle avoidance, torque limits). The alternating
direction method of multipliers (ADMM) algorithm can be used to solve such problems by breaking the
problem into a three step process where slack variables are added to decouple the solution of additional
constraints 𝑔(⋅), from the base dynamics constrained problem over 𝑙(⋅) and 𝑓(⋅). In this work we explore two
separate approaches to accelerate and compress the solution of the rate-limiting primal update.

𝑥𝑠

𝑥𝑔

min
𝑋,𝑈

𝑙𝑓 𝑥𝑁 +

𝑘=0

𝑁−1

𝑙(𝑥𝑘 , 𝑢𝑘)

subject to: 𝑓 𝑥𝑘, 𝑢𝑘 = 𝑥𝑘+1 ∀𝑘 ∈ [0, 𝑁)
𝑔 𝑥𝑘, 𝑢𝑘 ≤ 0 ∀𝑘 ∈ [0,𝑁)

primal update

slack update

dual update

linear sys. solve O(n3)

linear projection O(n2)

gradient ascent O(n)

ADMM Algorithm

MPCGPU: Real-Time Nonlinear Model Predictive Control through Symmetric Stair Preconditioned Conjugate Gradient on the GPU:
One key computation for direct trajectory optimization problems is the repeated solving of the resulting Karush-Kuhn-Tucker linear system, which can be solved using the
symmetric positive definite and block tridiagonal Schur Complement, 𝑺. Iterative linear system solves can accelerate such problems on parallel processors. However, these
methods require a preconditioner, 𝚽−𝟏 ≈ 𝑺−𝟏, as their convergence properties are related to the clustering and magnitude of the eigenvalues of Φ−1𝑆. MPCGPU solves the
NMPC problem through a three-step process, leveraging the symmetric-stair preconditioner for improved performance:

1) On the GPU it computes S, γ, and Φ−1 in parallel,

2) Uses the GPU-Accelerated Block-Diagonal PCG algorithm (GBD-PCG) to compute λ* and
reconstruct δX*, δU* efficiently by re-factoring the PCG algorithm,

3) Uses a parallel line search to form the final trajectory.

This trajectory is passed to the (simulated) robot and the current state of the (simulated) robot is
measured and fed back into our solver which is run again, warm-started with our last solution.

Symmetric Stair

TinyMPC: Conic Model-Predictive Control on Resource-Constrained Microcontrollers through Code Generation
TinyMPC trades generality for speed and low-memory utilization to enable real-time use on MCUs by exploiting the structure of the MPC problem. Specifically, we
leverage the closed-form Riccati solution to the LQR problem to compute the primal update by leveraging a single linearization of the system dynamics, 𝑓(⋅), and solving
the infinite horizon LQR problem offline. This enables us to cache bottleneck computations and avoid any matrix inversions or divisions online. The ADMM framework
also enables us to support both linear and conic inequality constraints for 𝒈(⋅) through a simple projection.

①

②
③

Dynamic Obstacle Avoidance ②

①
③

Extreme Pose Recovery

3s Period
10 cm

High-Speed Trajectory Tracking

Offline vs. Online

𝑪𝟐 = 𝐴 − 𝐵𝑲∞
𝑇

𝑪𝟏 = 𝑅 + 𝐵𝑇𝑷∞𝐵
−1

𝒑𝒌 = 𝑞𝑘 + 𝑪𝟐𝒑𝒌+𝟏 −𝑲∞
𝑻 𝑟𝑘

𝒅𝒌 = 𝑪𝟏(𝐵
𝑇𝒑𝒌+𝟏 + 𝑟𝑘)

𝑲∞

𝑷∞

LQR • On a 168 MHz STM32F405 with 1 MB of Flash and 128 kB of RAM we
find that TinyMPC scales better than OSQP across both state dimension
and time horizon, using far less memory for faster iterations.

• On a 600 MHz Teensy 4.1 with 7.75 MB of flash and 512 kB of tightly
coupled RAM, TinyMPC again scales better than ECOS and SCS across
both memory usage and iteration speed.

• In both settings, unlike the other solvers, TinyMPC fits inside the
resource limits of embedded hardware. These computational results
enable real-time optimal control onboard tiny robots like the Crazyflie
2.1, a 27 gram nano-quadrotor. Examples include:

o Real-time dynamic obstacle avoidance,

o Recovery from a 90° attitude error,

o High-speed figure-8 trajectory tracking,

o And tracking a descending helical reference with its position subject
to a 45° second-order cone glideslope.

• GBD-PCG’s advantage scales with problem size, with up to a
3.6x average speedup over QDLDL on the CPU.

• GBD-PCG, under multiple different exit tolerances, ϵ, exhibits
a bi-modal solve time distribution which is usually much
faster than the uni-modal distribution for QDLDL on the CPU.
E.g., for ϵ = 1e−4:

o >65% of GBD-PCG solves are ≥10x faster than the
fastest QDLDL solve,

o <10% of GBD-PCG solves are ≥2x slower, and the
slowest is 2.5x slower, than the slowest QDLDL solve.

• Our GPU-first approach enables
MPCGPU to scale to 512 knot points at
1kHz and execute 8 iterations for 128
knot points at 500Hz, for a per-
iteration rate of 4kHz.

This material is based upon work supported by the National Science Foundation (under Award 2246022). Any
opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do
not necessarily reflect those of the funding organizations. *These authors contributed equally to this work.

